forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_tensor_str.py
677 lines (590 loc) · 25.5 KB
/
_tensor_str.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
import contextlib
import dataclasses
import math
import textwrap
from typing import Any, Dict, Optional
import torch
from torch import inf
@dataclasses.dataclass
class __PrinterOptions:
precision: int = 4
threshold: float = 1000
edgeitems: int = 3
linewidth: int = 80
sci_mode: Optional[bool] = None
PRINT_OPTS = __PrinterOptions()
# We could use **kwargs, but this will give better docs
def set_printoptions(
precision=None,
threshold=None,
edgeitems=None,
linewidth=None,
profile=None,
sci_mode=None,
):
r"""Set options for printing. Items shamelessly taken from NumPy
Args:
precision: Number of digits of precision for floating point output
(default = 4).
threshold: Total number of array elements which trigger summarization
rather than full `repr` (default = 1000).
edgeitems: Number of array items in summary at beginning and end of
each dimension (default = 3).
linewidth: The number of characters per line for the purpose of
inserting line breaks (default = 80). Thresholded matrices will
ignore this parameter.
profile: Sane defaults for pretty printing. Can override with any of
the above options. (any one of `default`, `short`, `full`)
sci_mode: Enable (True) or disable (False) scientific notation. If
None (default) is specified, the value is defined by
`torch._tensor_str._Formatter`. This value is automatically chosen
by the framework.
Example::
>>> # Limit the precision of elements
>>> torch.set_printoptions(precision=2)
>>> torch.tensor([1.12345])
tensor([1.12])
>>> # Limit the number of elements shown
>>> torch.set_printoptions(threshold=5)
>>> torch.arange(10)
tensor([0, 1, 2, ..., 7, 8, 9])
>>> # Restore defaults
>>> torch.set_printoptions(profile='default')
>>> torch.tensor([1.12345])
tensor([1.1235])
>>> torch.arange(10)
tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
"""
if profile is not None:
if profile == "default":
PRINT_OPTS.precision = 4
PRINT_OPTS.threshold = 1000
PRINT_OPTS.edgeitems = 3
PRINT_OPTS.linewidth = 80
elif profile == "short":
PRINT_OPTS.precision = 2
PRINT_OPTS.threshold = 1000
PRINT_OPTS.edgeitems = 2
PRINT_OPTS.linewidth = 80
elif profile == "full":
PRINT_OPTS.precision = 4
PRINT_OPTS.threshold = inf
PRINT_OPTS.edgeitems = 3
PRINT_OPTS.linewidth = 80
if precision is not None:
PRINT_OPTS.precision = precision
if threshold is not None:
PRINT_OPTS.threshold = threshold
if edgeitems is not None:
PRINT_OPTS.edgeitems = edgeitems
if linewidth is not None:
PRINT_OPTS.linewidth = linewidth
PRINT_OPTS.sci_mode = sci_mode
def get_printoptions() -> Dict[str, Any]:
r"""Gets the current options for printing, as a dictionary that
can be passed as ``**kwargs`` to set_printoptions().
"""
return dataclasses.asdict(PRINT_OPTS)
@contextlib.contextmanager
def printoptions(**kwargs):
r"""Context manager that temporarily changes the print options. Accepted
arguments are same as :func:`set_printoptions`."""
old_kwargs = get_printoptions()
set_printoptions(**kwargs)
try:
yield
finally:
set_printoptions(**old_kwargs)
def tensor_totype(t):
dtype = torch.float if t.is_mps else torch.double
return t.to(dtype=dtype)
class _Formatter:
def __init__(self, tensor):
self.floating_dtype = tensor.dtype.is_floating_point
self.int_mode = True
self.sci_mode = False
self.max_width = 1
with torch.no_grad():
tensor_view = tensor.reshape(-1)
if not self.floating_dtype:
for value in tensor_view:
value_str = f"{value}"
self.max_width = max(self.max_width, len(value_str))
else:
nonzero_finite_vals = torch.masked_select(
tensor_view, torch.isfinite(tensor_view) & tensor_view.ne(0)
)
if nonzero_finite_vals.numel() == 0:
# no valid number, do nothing
return
# Convert to double for easy calculation. HalfTensor overflows with 1e8, and there's no div() on CPU.
nonzero_finite_abs = tensor_totype(nonzero_finite_vals.abs())
nonzero_finite_min = tensor_totype(nonzero_finite_abs.min())
nonzero_finite_max = tensor_totype(nonzero_finite_abs.max())
for value in nonzero_finite_vals:
if value != torch.ceil(value):
self.int_mode = False
break
if self.int_mode:
# in int_mode for floats, all numbers are integers, and we append a decimal to nonfinites
# to indicate that the tensor is of floating type. add 1 to the len to account for this.
if (
nonzero_finite_max / nonzero_finite_min > 1000.0
or nonzero_finite_max > 1.0e8
):
self.sci_mode = True
for value in nonzero_finite_vals:
value_str = f"{{:.{PRINT_OPTS.precision}e}}".format(value)
self.max_width = max(self.max_width, len(value_str))
else:
for value in nonzero_finite_vals:
value_str = f"{value:.0f}"
self.max_width = max(self.max_width, len(value_str) + 1)
else:
# Check if scientific representation should be used.
if (
nonzero_finite_max / nonzero_finite_min > 1000.0
or nonzero_finite_max > 1.0e8
or nonzero_finite_min < 1.0e-4
):
self.sci_mode = True
for value in nonzero_finite_vals:
value_str = f"{{:.{PRINT_OPTS.precision}e}}".format(value)
self.max_width = max(self.max_width, len(value_str))
else:
for value in nonzero_finite_vals:
value_str = f"{{:.{PRINT_OPTS.precision}f}}".format(value)
self.max_width = max(self.max_width, len(value_str))
if PRINT_OPTS.sci_mode is not None:
self.sci_mode = PRINT_OPTS.sci_mode
def width(self):
return self.max_width
def format(self, value):
if self.floating_dtype:
if self.sci_mode:
ret = f"{{:{self.max_width}.{PRINT_OPTS.precision}e}}".format(value)
elif self.int_mode:
ret = f"{value:.0f}"
if not (math.isinf(value) or math.isnan(value)):
ret += "."
else:
ret = f"{{:.{PRINT_OPTS.precision}f}}".format(value)
else:
ret = f"{value}"
return (self.max_width - len(ret)) * " " + ret
def _scalar_str(self, formatter1, formatter2=None):
if formatter2 is not None:
real_str = _scalar_str(self.real, formatter1)
imag_str = (_scalar_str(self.imag, formatter2) + "j").lstrip()
# handles negative numbers, +0.0, -0.0
if imag_str[0] == "+" or imag_str[0] == "-":
return real_str + imag_str
else:
return real_str + "+" + imag_str
else:
return formatter1.format(self.item())
def _vector_str(self, indent, summarize, formatter1, formatter2=None):
# length includes spaces and comma between elements
element_length = formatter1.width() + 2
if formatter2 is not None:
# width for imag_formatter + an extra j for complex
element_length += formatter2.width() + 1
elements_per_line = max(
1, int(math.floor((PRINT_OPTS.linewidth - indent) / (element_length)))
)
def _val_formatter(val, formatter1=formatter1, formatter2=formatter2):
if formatter2 is not None:
real_str = formatter1.format(val.real)
imag_str = (formatter2.format(val.imag) + "j").lstrip()
# handles negative numbers, +0.0, -0.0
if imag_str[0] == "+" or imag_str[0] == "-":
return real_str + imag_str
else:
return real_str + "+" + imag_str
else:
return formatter1.format(val)
if summarize and not PRINT_OPTS.edgeitems:
# Deal with edge case that negative zero is zero
data = ["..."]
elif summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems:
data = (
[_val_formatter(val) for val in self[: PRINT_OPTS.edgeitems].tolist()]
+ [" ..."]
+ [_val_formatter(val) for val in self[-PRINT_OPTS.edgeitems :].tolist()]
)
else:
data = [_val_formatter(val) for val in self.tolist()]
data_lines = [
data[i : i + elements_per_line] for i in range(0, len(data), elements_per_line)
]
lines = [", ".join(line) for line in data_lines]
return "[" + ("," + "\n" + " " * (indent + 1)).join(lines) + "]"
# formatter2 is only used for printing complex tensors.
# For complex tensors, formatter1 and formatter2 are the formatters for tensor.real
# and tensor.imag respesectively
def _tensor_str_with_formatter(self, indent, summarize, formatter1, formatter2=None):
dim = self.dim()
if dim == 0:
return _scalar_str(self, formatter1, formatter2)
if dim == 1:
return _vector_str(self, indent, summarize, formatter1, formatter2)
if summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems:
slices = (
[
_tensor_str_with_formatter(
self[i], indent + 1, summarize, formatter1, formatter2
)
for i in range(0, PRINT_OPTS.edgeitems)
]
+ ["..."]
+ [
_tensor_str_with_formatter(
self[i], indent + 1, summarize, formatter1, formatter2
)
for i in range(len(self) - PRINT_OPTS.edgeitems, len(self))
]
)
else:
slices = [
_tensor_str_with_formatter(
self[i], indent + 1, summarize, formatter1, formatter2
)
for i in range(0, self.size(0))
]
tensor_str = ("," + "\n" * (dim - 1) + " " * (indent + 1)).join(slices)
return "[" + tensor_str + "]"
def _tensor_str(self, indent):
if self.numel() == 0:
return "[]"
if self.has_names():
# There are two main codepaths (possibly more) that tensor printing goes through:
# - tensor data can fit comfortably on screen
# - tensor data needs to be summarized
# Some of the codepaths don't fully support named tensors, so we send in
# an unnamed tensor to the formatting code as a workaround.
self = self.rename(None)
summarize = self.numel() > PRINT_OPTS.threshold
if self._is_zerotensor():
self = self.clone()
# handle the negative bit
if self.is_neg():
self = self.resolve_neg()
if self.dtype in [
torch.float16,
torch.bfloat16,
torch.float8_e5m2,
torch.float8_e5m2fnuz,
torch.float8_e4m3fn,
torch.float8_e4m3fnuz,
]:
self = self.float()
if self.dtype is torch.complex32:
self = self.cfloat()
if self.dtype.is_complex:
# handle the conjugate bit
self = self.resolve_conj()
real_formatter = _Formatter(
get_summarized_data(self.real) if summarize else self.real
)
imag_formatter = _Formatter(
get_summarized_data(self.imag) if summarize else self.imag
)
return _tensor_str_with_formatter(
self, indent, summarize, real_formatter, imag_formatter
)
else:
formatter = _Formatter(get_summarized_data(self) if summarize else self)
return _tensor_str_with_formatter(self, indent, summarize, formatter)
def _add_suffixes(tensor_str, suffixes, indent, force_newline):
tensor_strs = [tensor_str]
last_line_len = len(tensor_str) - tensor_str.rfind("\n") + 1
for suffix in suffixes:
suffix_len = len(suffix)
if force_newline or last_line_len + suffix_len + 2 > PRINT_OPTS.linewidth:
tensor_strs.append(",\n" + " " * indent + suffix)
last_line_len = indent + suffix_len
force_newline = False
else:
tensor_strs.append(", " + suffix)
last_line_len += suffix_len + 2
tensor_strs.append(")")
return "".join(tensor_strs)
def get_summarized_data(self):
dim = self.dim()
if dim == 0:
return self
if dim == 1:
if self.size(0) > 2 * PRINT_OPTS.edgeitems:
return torch.cat(
(self[: PRINT_OPTS.edgeitems], self[-PRINT_OPTS.edgeitems :])
)
else:
return self
if not PRINT_OPTS.edgeitems:
return self.new_empty([0] * self.dim())
elif self.size(0) > 2 * PRINT_OPTS.edgeitems:
start = [self[i] for i in range(0, PRINT_OPTS.edgeitems)]
end = [self[i] for i in range(len(self) - PRINT_OPTS.edgeitems, len(self))]
return torch.stack([get_summarized_data(x) for x in (start + end)])
else:
return torch.stack([get_summarized_data(x) for x in self])
def _str_intern(inp, *, tensor_contents=None):
if torch._C._functorch.is_functorch_wrapped_tensor(inp):
return _functorch_wrapper_str_intern(inp, tensor_contents=tensor_contents)
is_plain_tensor = type(inp) is torch.Tensor or type(inp) is torch.nn.Parameter
if inp.is_nested:
prefix = "nested_tensor("
elif is_plain_tensor:
prefix = "tensor("
else:
prefix = f"{type(inp).__name__}("
indent = len(prefix)
suffixes = []
custom_contents_provided = tensor_contents is not None
if custom_contents_provided:
tensor_str = tensor_contents
# This is used to extract the primal value and thus disable the forward AD
# within this function.
# TODO(albanD) This needs to be updated when more than one level is supported
self, tangent = torch.autograd.forward_ad.unpack_dual(inp)
# Note [Print tensor device]:
# A general logic here is we only print device when it doesn't match
# the device specified in default tensor type.
# Currently torch.set_default_tensor_type() only supports CPU/CUDA, thus
# torch._C._get_default_device() only returns either cpu or cuda.
# In other cases, we don't have a way to set them as default yet,
# and we should always print out device for them.
if (
self.device.type != torch._C._get_default_device()
or (
self.device.type == "cuda"
and torch.cuda.current_device() != self.device.index
)
or (self.device.type == "mps")
):
suffixes.append("device='" + str(self.device) + "'")
# Tensor printing performs tensor operations like slice, indexing, etc to make it in a
# representable format. These operations on ipu/xla/lazy/mtia tensor results in compilations. Hence,
# to avoid compilations, copying the tensor to cpu before printing.
if self.device.type in ["xla", "lazy", "ipu", "mtia"]:
self = self.to("cpu")
# TODO: add an API to map real -> complex dtypes
_default_complex_dtype = (
torch.cdouble if torch.get_default_dtype() == torch.double else torch.cfloat
)
has_default_dtype = self.dtype in (
torch.get_default_dtype(),
_default_complex_dtype,
torch.int64,
torch.bool,
)
if self.is_sparse:
suffixes.append("size=" + str(tuple(self.shape)))
from torch._subclasses.fake_tensor import FakeTensor
if not self.is_meta and not isinstance(self, FakeTensor):
suffixes.append("nnz=" + str(self._nnz()))
if not has_default_dtype:
suffixes.append("dtype=" + str(self.dtype))
if not custom_contents_provided:
indices_prefix = "indices=tensor("
indices = self._indices().detach()
indices_str = _tensor_str(indices, indent + len(indices_prefix))
if indices.numel() == 0:
indices_str += ", size=" + str(tuple(indices.shape))
values_prefix = "values=tensor("
values = self._values().detach()
values_str = _tensor_str(values, indent + len(values_prefix))
if values.numel() == 0:
values_str += ", size=" + str(tuple(values.shape))
tensor_str = (
indices_prefix
+ indices_str
+ "),\n"
+ " " * indent
+ values_prefix
+ values_str
+ ")"
)
elif self.layout in {
torch.sparse_csr,
torch.sparse_csc,
torch.sparse_bsr,
torch.sparse_bsc,
}:
suffixes.append("size=" + str(tuple(self.shape)))
suffixes.append("nnz=" + str(self._nnz()))
if not has_default_dtype:
suffixes.append("dtype=" + str(self.dtype))
if not custom_contents_provided:
compressed_indices_method, plain_indices_method = {
torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
}[self.layout]
if self.layout in {torch.sparse_csr, torch.sparse_bsr}:
cdimname, pdimname = "row", "column"
else:
cdimname, pdimname = "column", "row"
compressed_indices_prefix = f"c{cdimname[:3]}_indices=tensor("
compressed_indices = compressed_indices_method(self).detach()
compressed_indices_str = _tensor_str(
compressed_indices, indent + len(compressed_indices_prefix)
)
if compressed_indices.numel() == 0:
compressed_indices_str += ", size=" + str(
tuple(compressed_indices.shape)
)
plain_indices_prefix = f"{pdimname[:3]}_indices=tensor("
plain_indices = plain_indices_method(self).detach()
plain_indices_str = _tensor_str(
plain_indices, indent + len(plain_indices_prefix)
)
if plain_indices.numel() == 0:
plain_indices_str += ", size=" + str(tuple(plain_indices.shape))
values_prefix = "values=tensor("
values = self.values().detach()
values_str = _tensor_str(values, indent + len(values_prefix))
if values.numel() == 0:
values_str += ", size=" + str(tuple(values.shape))
tensor_str = (
compressed_indices_prefix
+ compressed_indices_str
+ "),\n"
+ " " * indent
+ plain_indices_prefix
+ plain_indices_str
+ "),\n"
+ " " * indent
+ values_prefix
+ values_str
+ ")"
)
elif self.is_quantized:
suffixes.append("size=" + str(tuple(self.shape)))
if not has_default_dtype:
suffixes.append("dtype=" + str(self.dtype))
suffixes.append("quantization_scheme=" + str(self.qscheme()))
if (
self.qscheme() == torch.per_tensor_affine
or self.qscheme() == torch.per_tensor_symmetric
):
suffixes.append("scale=" + str(self.q_scale()))
suffixes.append("zero_point=" + str(self.q_zero_point()))
elif (
self.qscheme() == torch.per_channel_affine
or self.qscheme() == torch.per_channel_symmetric
or self.qscheme() == torch.per_channel_affine_float_qparams
):
suffixes.append("scale=" + str(self.q_per_channel_scales()))
suffixes.append("zero_point=" + str(self.q_per_channel_zero_points()))
suffixes.append("axis=" + str(self.q_per_channel_axis()))
if not custom_contents_provided:
tensor_str = _tensor_str(self.dequantize(), indent)
elif self.is_nested:
if not custom_contents_provided:
def indented_str(s, indent):
return "\n".join(f" {line}" for line in s.split("\n"))
strs = ",\n".join(
indented_str(str(t), indent + 1)
for t in torch.ops.aten.unbind.int(self, 0)
)
tensor_str = f"[\n{strs}\n]"
elif torch._is_functional_tensor(self):
prefix = "_to_functional_tensor("
tensor_str = repr(torch._from_functional_tensor(self))
else:
# Circular import problem, so we import it here
from torch._subclasses.fake_tensor import FakeTensor
if self.is_meta or isinstance(self, FakeTensor):
suffixes.append("size=" + str(tuple(self.shape)))
if self.dtype != torch.get_default_dtype():
suffixes.append("dtype=" + str(self.dtype))
# TODO: This implies that ellipses is valid syntax for allocating
# a meta tensor or FakeTensor, which it could be, but it isn't right now
if not custom_contents_provided:
tensor_str = "..."
else:
if self.numel() == 0 and not self.is_sparse:
# Explicitly print the shape if it is not (0,), to match NumPy behavior
if self.dim() != 1:
suffixes.append("size=" + str(tuple(self.shape)))
# In an empty tensor, there are no elements to infer if the dtype
# should be int64, so it must be shown explicitly.
if self.dtype != torch.get_default_dtype():
suffixes.append("dtype=" + str(self.dtype))
if not custom_contents_provided:
tensor_str = "[]"
else:
if not PRINT_OPTS.edgeitems:
suffixes.append("size=" + str(tuple(self.shape)))
if not has_default_dtype:
suffixes.append("dtype=" + str(self.dtype))
if not custom_contents_provided:
if self.layout != torch.strided:
tensor_str = _tensor_str(self.to_dense(), indent)
else:
tensor_str = _tensor_str(self, indent)
if self.layout != torch.strided:
suffixes.append("layout=" + str(self.layout))
# Use inp here to get the original grad_fn and not the one generated by the forward grad
# unpacking.
grad_fn_name = None
try:
grad_fn = inp.grad_fn
except RuntimeError:
# Accessing the grad_fn calls rebasing logic which would cause an error
# if that tensor is a view created in no-grad mode modified in-place in
# no-grad mode. See: https://github.com/pytorch/pytorch/issues/99968
grad_fn_name = "Invalid"
if grad_fn_name is None and grad_fn is not None: # type: ignore[possibly-undefined]
grad_fn_name = type(grad_fn).__name__
if grad_fn_name == "CppFunction":
grad_fn_name = grad_fn.name().rsplit("::", 1)[-1]
if grad_fn_name is not None:
suffixes.append(f"grad_fn=<{grad_fn_name}>")
elif inp.requires_grad:
suffixes.append("requires_grad=True")
if self.has_names():
suffixes.append(f"names={self.names}")
if tangent is not None:
suffixes.append(f"tangent={tangent}")
string_repr = _add_suffixes(
prefix + tensor_str, suffixes, indent, force_newline=self.is_sparse # type: ignore[possibly-undefined]
)
# Check if this instance is flagged as a parameter and change the repr accordingly.
# Unfortunately, this function has to be aware of this detail.
# NB: This is currently skipped for plain tensor parameters to maintain BC. In the future,
# this should be done for those as well to produce a valid repr.
if isinstance(self, torch.nn.Parameter) and not is_plain_tensor:
string_repr = f"Parameter({string_repr})"
return string_repr
def _functorch_wrapper_str_intern(tensor, *, tensor_contents=None):
level = torch._C._functorch.maybe_get_level(tensor)
assert level != -1
if torch._C._functorch.is_functionaltensor(tensor):
# Since we're unwrapping the FunctionalTensorWrapper, we need to make sure
# that it's up to date first
torch._sync(tensor)
value = torch._C._functorch.get_unwrapped(tensor)
value_repr = repr(value)
indented_value_repr = textwrap.indent(value_repr, " " * 4)
if torch._C._functorch.is_batchedtensor(tensor):
bdim = torch._C._functorch.maybe_get_bdim(tensor)
assert bdim != -1
return (
f"BatchedTensor(lvl={level}, bdim={bdim}, value=\n"
f"{indented_value_repr}\n"
f")"
)
if torch._C._functorch.is_gradtrackingtensor(tensor):
return (
f"GradTrackingTensor(lvl={level}, value=\n" f"{indented_value_repr}\n" f")"
)
if torch._C._functorch.is_functionaltensor(tensor):
return f"FunctionalTensor(lvl={level}, value=\\\n{value_repr})"
raise ValueError("We don't know how to print this, please file us an issue")
def _str(self, *, tensor_contents=None):
with torch.no_grad(), torch.utils._python_dispatch._disable_current_modes():
guard = torch._C._DisableFuncTorch()
return _str_intern(self, tensor_contents=tensor_contents)