forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AdaptiveAveragePooling3d.cu
545 lines (465 loc) · 17.2 KB
/
AdaptiveAveragePooling3d.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/TensorUtils.h>
#include <ATen/Utils.h>
#include <ATen/cuda/Atomic.cuh>
#include <ATen/cuda/CUDAContext.h>
#include <c10/util/Exception.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/adaptive_avg_pool3d_backward_native.h>
#include <ATen/ops/adaptive_avg_pool3d_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_like.h>
#endif
#include <ATen/native/AdaptivePooling.h>
#include <algorithm>
#include <cfloat>
#include <cmath>
namespace at::native {
namespace {
__device__ inline int64_t start_index(int64_t a, int64_t b, int64_t c) {
return (a / b) * c + ((a % b) * c) / b;
}
__device__ inline int64_t end_index(int64_t a, int64_t b, int64_t c) {
return 1 + ((a + 1) * c - 1) / b;
}
// 5d tensor B x D x T x H x W
// All kernels view batch dim B and dim D as collapsed.
/*
* Description:
* this function adaptively average pools an input 5D tensor along dimensions
* 2, 3, and 4 5D input, 5D output
*
* gridDim.y blocks work together on a single 2D output plane specified by
* (blockIdx.x + offsetZ).
*/
template <typename scalar_t, typename accscalar_t>
__global__ void adaptiveaveragepool(
const scalar_t *input, scalar_t *output,
int isizeT, int isizeH, int isizeW,
int osizeT, int osizeH, int osizeW,
int64_t istrideD,
int64_t istrideT, int64_t istrideH, int64_t istrideW,
int64_t offsetZ) {
// iterates on output pixels
int ot, oh, ow;
// compute offsets based on thread/block ID
int ostartH = blockIdx.y * blockDim.y + threadIdx.y;
int oendH = osizeH;
int ostepH = gridDim.y * blockDim.y;
int ostartW = threadIdx.x;
int oendW = osizeW;
int ostepW = blockDim.x;
// select output plane
int64_t o_plane = blockIdx.x + offsetZ;
ot = o_plane % osizeT; // output frame/time
int d = o_plane / osizeT; // slice/feature
// input frame/time range is fixed.
int istartT = start_index(ot, osizeT, isizeT);
int iendT = end_index(ot, osizeT, isizeT);
int kT = iendT - istartT;
// input offset by slice/feature and earliest relevant frame/time
const scalar_t *input_dt = input + d*istrideD + istartT*istrideT;
// output offset by slice/feature and frame/time
scalar_t *output_dt = output + o_plane*osizeH*osizeW;
// For all output pixels...
for (oh = ostartH; oh < oendH; oh += ostepH) {
int istartH = start_index(oh, osizeH, isizeH);
int iendH = end_index(oh, osizeH, isizeH);
int kH = iendH - istartH;
for (ow = ostartW; ow < oendW; ow += ostepW) {
int istartW = start_index(ow, osizeW, isizeW);
int iendW = end_index(ow, osizeW, isizeW);
int kW = iendW - istartW;
// Compute the average pooling from corresponding input pixels
const scalar_t *ptr_input = input_dt + istartH*istrideH + istartW*istrideW;
scalar_t *ptr_output = output_dt + oh*osizeW + ow;
accscalar_t sum = static_cast<accscalar_t>(0);
int it, ih, iw;
for (it = 0; it < kT; ++it) {
for (ih = 0; ih < kH; ++ih) {
for (iw = 0; iw < kW; ++iw) {
scalar_t val = ptr_input[ih*istrideH + iw*istrideW];
sum += static_cast<accscalar_t>(val);
}
}
ptr_input += istrideT; // next input frame
}
// Update output
const accscalar_t divide_factor = static_cast<accscalar_t>(kT * kH * kW);
*ptr_output = static_cast<scalar_t>(sum / divide_factor);
}
}
}
template <typename scalar_t, typename accscalar_t>
void adaptiveaveragepool_loop(
const scalar_t *input_data, scalar_t *output_data,
int64_t totalZ,
int isizeT, int isizeH, int isizeW,
int osizeT, int osizeH, int osizeW,
int64_t istrideD, int64_t istrideT, int64_t istrideH, int64_t istrideW) {
int64_t offsetZ = 0;
dim3 threads(32, 8);
// each H*W plane is processed by blocksH thread blocks
int blocksH = std::max((int)(16L / totalZ), 1);
while (totalZ > 0) {
dim3 blocks(totalZ > 65535 ? 65535 : totalZ, blocksH);
adaptiveaveragepool<scalar_t, accscalar_t>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
input_data, output_data,
isizeT, isizeH, isizeW,
osizeT, osizeH, osizeW,
istrideD,
istrideT, istrideH, istrideW,
offsetZ);
C10_CUDA_KERNEL_LAUNCH_CHECK();
totalZ -= 65535;
offsetZ += 65535;
}
}
/*
* Description:
* This function computes the gradInput from gradOutput.
*
* gridDim.y blocks work together on a single 2D output plane specified by
* (blockIdx.x + offsetZ).
*/
template <typename scalar_t, typename accscalar_t>
__global__ void adaptiveaveragegradinput(
scalar_t *gradInput, const scalar_t *gradOutput,
int isizeT, int isizeH, int isizeW,
int osizeT, int osizeH, int osizeW,
int64_t offsetZ)
{
// iterators on input pixels
int it, ih, iw;
// compute offsets based on thread/block ID
int istartH = blockIdx.y * blockDim.y + threadIdx.y;
int iendH = isizeH;
int istepH = gridDim.y * blockDim.y;
int istartW = threadIdx.x;
int iendW = isizeW;
int istepW = blockDim.x;
// select input plane
int64_t i_plane = blockIdx.x + offsetZ;
it = i_plane % isizeT; // output frame/time
int d = i_plane / isizeT; // slice/feature
// output frame/time range is fixed.
int ostartT = start_index(it, isizeT, osizeT);
int oendT = end_index(it, isizeT, osizeT);
// gradInput offset by slice/feature and frame/time.
scalar_t *gradInput_dt = gradInput + i_plane*isizeH*isizeW;
// gradOutput offset by slice/feature and earliest relevant frame/time
const scalar_t *gradOutput_dt = gradOutput + (d*osizeT + ostartT)*osizeH*osizeW;
// For all input pixels...
for (ih = istartH; ih < iendH; ih += istepH) {
int ostartH = start_index(ih, isizeH, osizeH);
int oendH = end_index(ih, isizeH, osizeH);
for (iw = istartW; iw < iendW; iw += istepW) {
int ostartW = start_index(iw, isizeW, osizeW);
int oendW = end_index(iw, isizeW, osizeW);
// Compute the gradients from corresponding output pixels
scalar_t *ptr_gradInput = gradInput_dt + ih*isizeW + iw;
const scalar_t *ptr_gradOutput = gradOutput_dt;
// for all relevant output pixels
int ot, oh, ow;
for (ot = ostartT; ot < oendT; ++ot) {
int kT = end_index(ot, osizeT, isizeT) - start_index(ot, osizeT, isizeT);
for (oh = ostartH; oh < oendH; ++oh) {
int kH = end_index(oh, osizeH, isizeH) - start_index(oh, osizeH, isizeH);
for (ow = ostartW; ow < oendW; ++ow) {
int kW = end_index(ow, osizeW, isizeW) - start_index(ow, osizeW, isizeW);
const accscalar_t divide_factor = kW * kH * kT;
accscalar_t grad_delta = static_cast<accscalar_t>(ptr_gradOutput[oh*osizeW + ow] / divide_factor);
*ptr_gradInput += static_cast<scalar_t>(grad_delta);
}
}
ptr_gradOutput += osizeH*osizeW; // next output frame
}
}
}
}
template <typename scalar_t, typename accscalar_t>
void adaptiveaveragegradinput_loop(
scalar_t *gradInput_data, const scalar_t *gradOutput_data,
int64_t totalZ,
int isizeT, int isizeH, int isizeW,
int osizeT, int osizeH, int osizeW) {
int64_t offsetZ = 0;
dim3 threads(32, 8);
// each H*W plane is processed by blocksH thread blocks
int blocksH = std::max((int)(16L / totalZ), 1);
while (totalZ > 0) {
dim3 blocks(totalZ > 65535 ? 65535 : totalZ, blocksH);
adaptiveaveragegradinput<scalar_t, accscalar_t>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
gradInput_data, gradOutput_data,
isizeT, isizeH, isizeW,
osizeT, osizeH, osizeW,
offsetZ);
C10_CUDA_KERNEL_LAUNCH_CHECK();
totalZ -= 65535;
offsetZ += 65535;
}
}
/*
* Description:
* This function computes the gradInput from gradOutput.
*
* gridDim.y blocks work together on a single 2D output plane specified by
* (blockIdx.x + offsetZ).
*
* (uses atomic add)
*
*/
template <typename scalar_t>
__global__ void atomicadaptiveaveragegradinput(
scalar_t *gradInput, const scalar_t *gradOutput,
int isizeT, int isizeH, int isizeW,
int osizeT, int osizeH, int osizeW,
int64_t offsetZ)
{
// iterators on output pixels
int ot, oh, ow;
// compute offsets based on thread/block ID
int ostartH = blockIdx.y * blockDim.y + threadIdx.y;
int oendH = osizeH;
int ostepH = gridDim.y * blockDim.y;
int ostartW = threadIdx.x;
int oendW = osizeW;
int ostepW = blockDim.x;
// select output plane
int64_t o_plane = blockIdx.x + offsetZ;
ot = o_plane % osizeT; // output frame/time
int d = o_plane / osizeT; // output slice/feature
// input frame/time range is fixed.
int istartT = start_index(ot, osizeT, isizeT);
int iendT = end_index(ot, osizeT, isizeT);
int kT = iendT - istartT;
// gradInput offset by slice/feature and earliest relevant frame/time
scalar_t *gradInput_nt = gradInput + (d*isizeT + istartT)*isizeH*isizeW;
// gradOutput offset by slice/feature and frame/time
const scalar_t *gradOutput_nt = gradOutput + o_plane*osizeH*osizeW;
// For all output pixels...
for (oh = ostartH; oh < oendH; oh += ostepH) {
int istartH = start_index(oh, osizeH, isizeH);
int iendH = end_index(oh, osizeH, isizeH);
int kH = iendH - istartH;
for (ow = ostartW; ow < oendW; ow += ostepW) {
int istartW = start_index(ow, osizeW, isizeW);
int iendW = end_index(ow, osizeW, isizeW);
int kW = iendW - istartW;
// Compute the gradients from corresponding input pixels
scalar_t *ptr_gradInput = gradInput_nt + istartH*isizeW + istartW;
const scalar_t *ptr_gradOutput = gradOutput_nt + oh*osizeW + ow;
scalar_t grad_delta = *ptr_gradOutput / kT / kH / kW;
int it, ih, iw;
for (it = 0; it < kT; ++it) {
for (ih = 0; ih < kH; ++ih) {
for (iw = 0; iw < kW; ++iw) {
gpuAtomicAddNoReturn(&(ptr_gradInput[ih*isizeW + iw]), grad_delta);
}
}
ptr_gradInput += isizeH*isizeW; // next input frame
}
}
}
}
template <typename scalar_t>
void atomicadaptiveaveragegradinput_loop(
scalar_t* gradInput_data, const scalar_t* gradOutput_data,
int64_t totalZ,
int isizeT, int isizeH, int isizeW,
int osizeT, int osizeH, int osizeW) {
int64_t offsetZ = 0;
dim3 threads(32, 8);
int blocksH = std::max((int)(16L / totalZ), 1);
while (totalZ > 0) {
dim3 blocks(totalZ > 65535 ? 65535 : totalZ, blocksH);
atomicadaptiveaveragegradinput<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
gradInput_data, gradOutput_data,
isizeT, isizeH, isizeW,
osizeT, osizeH, osizeW,
offsetZ);
C10_CUDA_KERNEL_LAUNCH_CHECK();
totalZ -= 65535;
offsetZ += 65535;
}
}
// 5D tensor B x D x T x H x w
void adaptive_avg_pool3d_out_cuda_template(
Tensor& output,
const Tensor& input_,
IntArrayRef& output_size) {
TensorArg output_arg{output, "output", 1};
TensorArg input_arg{input_, "input_", 2};
checkAllSameGPU("adaptive_avg_pool3d_cuda", {output_arg, input_arg});
for (int64_t i = 1; i < input_.ndimension(); i++) {
TORCH_CHECK(
input_.size(i) > 0,
"adaptive_avg_pool3d_cuda(): Expected input to have non-zero size for non-batch dimensions, "
"but input has sizes ", input_.sizes(),
" with dimension ", i, " being empty");
}
TORCH_CHECK(
(input_.ndimension() == 4 || input_.ndimension() == 5),
"adaptive_avg_pool3d_cuda(): Expected 4D or 5D tensor, but got ", input_.sizes());
// the jit sometimes passes output_size.size() == 1
TORCH_CHECK(
output_size.size() == 1 || output_size.size() == 3,
"adaptive_avg_pool3d: internal error: output_size.size() must be 1 or 3");
int64_t osizeT = output_size[0];
int64_t osizeH = output_size[1];
int64_t osizeW = output_size[2];
int64_t sizeD, isizeT, isizeH, isizeW;
int64_t istrideD, istrideT, istrideH, istrideW;
int64_t totalZ;
const Tensor& input = input_.ndimension() == 4 ? input_ : input_.contiguous();
if (input.ndimension() == 4) {
sizeD = input.size(0);
isizeT = input.size(1);
isizeH = input.size(2);
isizeW = input.size(3);
istrideD = input.stride(0);
istrideT = input.stride(1);
istrideH = input.stride(2);
istrideW = input.stride(3);
output.resize_({sizeD, osizeT, osizeH, osizeW});
totalZ = sizeD * osizeT;
} else {
int64_t sizeB = input.size(0);
sizeD = input.size(1);
isizeT = input.size(2);
isizeH = input.size(3);
isizeW = input.size(4);
istrideD = input.stride(1);
istrideT = input.stride(2);
istrideH = input.stride(3);
istrideW = input.stride(4);
output.resize_({sizeB, sizeD, osizeT, osizeH, osizeW});
totalZ = sizeB * sizeD * osizeT;
}
if (output.numel() == 0) {
return;
}
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16,
input.scalar_type(), "adaptive_avg_pool3d_cuda", [&] {
using accscalar_t = at::acc_type<scalar_t, true>;
const scalar_t* input_data = input.const_data_ptr<scalar_t>();
scalar_t* output_data = output.mutable_data_ptr<scalar_t>();
adaptiveaveragepool_loop<scalar_t, accscalar_t>(
input_data, output_data,
totalZ,
isizeT, isizeH, isizeW,
osizeT, osizeH, osizeW,
istrideD, istrideT, istrideH, istrideW);
});
}
void adaptive_avg_pool3d_backward_out_cuda_template(
Tensor& gradInput,
const Tensor& gradOutput_,
const Tensor& input) {
TensorArg grad_input_arg{gradInput, "gradInput", 1};
TensorArg grad_output_arg{gradOutput_, "gradOutput_", 2};
TensorArg input_arg{input, "input", 3};
adaptive_pool_empty_output_check(gradOutput_, "adaptive_avg_pool3d_backward");
checkAllSameGPU(
"adaptive_avg_pool3d_out_cuda",
{grad_input_arg, grad_output_arg, input_arg});
const Tensor gradOutput = gradOutput_.contiguous();
gradInput.resize_as_(input);
if (gradInput.numel() == 0) {
return;
}
gradInput.zero_();
int64_t sizeD, isizeT, isizeH, isizeW;
int64_t osizeT, osizeH, osizeW;
int64_t totalZ;
if (input.ndimension() == 4) {
sizeD = input.size(0);
isizeT = input.size(1);
isizeH = input.size(2);
isizeW = input.size(3);
osizeT = gradOutput.size(1);
osizeH = gradOutput.size(2);
osizeW = gradOutput.size(3);
} else {
sizeD = input.size(1);
isizeT = input.size(2);
isizeH = input.size(3);
isizeW = input.size(4);
osizeT = gradOutput.size(2);
osizeH = gradOutput.size(3);
osizeW = gradOutput.size(4);
}
bool atomic = (isizeW%osizeW != 0) || (isizeH%osizeH != 0) || (isizeT%osizeT != 0);
if (input.ndimension() == 4) {
totalZ = atomic ? sizeD * osizeT : sizeD * isizeT;
} else {
int sizeB = input.size(0);
totalZ = atomic ? sizeB * sizeD * osizeT : sizeB * sizeD * isizeT;
}
if (atomic) {
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16,
input.scalar_type(), "adaptive_avg_pool3d_backward_cuda", [&] {
scalar_t* gradInput_data = gradInput.mutable_data_ptr<scalar_t>();
const scalar_t* gradOutput_data = gradOutput.const_data_ptr<scalar_t>();
atomicadaptiveaveragegradinput_loop(
gradInput_data, gradOutput_data,
totalZ,
isizeT, isizeH, isizeW,
osizeT, osizeH, osizeW);
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16,
input.scalar_type(), "adaptive_avg_pool3d_backward_cuda", [&] {
using accscalar_t = at::acc_type<scalar_t, true>;
scalar_t* gradInput_data = gradInput.mutable_data_ptr<scalar_t>();
const scalar_t* gradOutput_data = gradOutput.const_data_ptr<scalar_t>();
adaptiveaveragegradinput_loop<scalar_t, accscalar_t>(
gradInput_data, gradOutput_data,
totalZ,
isizeT, isizeH, isizeW,
osizeT, osizeH, osizeW);
});
}
}
} // namespace
Tensor& adaptive_avg_pool3d_out_cuda(const Tensor& input,
IntArrayRef output_size,
Tensor& output) {
adaptive_avg_pool3d_out_cuda_template(output, input, output_size);
return output;
}
Tensor adaptive_avg_pool3d_cuda(
const Tensor& input,
IntArrayRef output_size) {
auto output = at::empty({0}, input.options());
adaptive_avg_pool3d_out_cuda_template(output, input, output_size);
return output;
}
Tensor& adaptive_avg_pool3d_backward_out_cuda(const Tensor& gradOutput_,
const Tensor& input,
Tensor& gradInput) {
// See Note [Writing Nondeterministic Operations]
// Nondeterministic because of atomicAdd usage
globalContext().alertNotDeterministic("adaptive_avg_pool3d_backward_out_cuda");
adaptive_avg_pool3d_backward_out_cuda_template(gradInput, gradOutput_, input);
return gradInput;
}
Tensor adaptive_avg_pool3d_backward_cuda(
const Tensor& gradOutput_,
const Tensor& input) {
// See Note [Writing Nondeterministic Operations]
// Nondeterministic because of atomicAdd usage
globalContext().alertNotDeterministic("adaptive_avg_pool3d_backward_cuda");
auto gradInput = at::empty_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
adaptive_avg_pool3d_backward_out_cuda_template(gradInput, gradOutput_, input);
return gradInput;
}
} // namespace at::native