forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AdaptiveAvgPoolKernel.cpp
417 lines (359 loc) · 14.8 KB
/
AdaptiveAvgPoolKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/native/AdaptivePooling.h>
#include <ATen/Parallel.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/native/cpu/utils.h>
#include <c10/util/irange.h>
#include <ATen/OpMathType.h>
namespace at::native {
namespace {
template <typename scalar_t, typename accscalar_t>
void cpu_adaptive_avg_pool(
Tensor& output_,
const Tensor& input_,
IntArrayRef output_size) {
auto input = input_.contiguous();
auto output = output_.contiguous();
auto input_data = input.data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
int64_t ndim = input.ndimension();
// treat batch size and channels as one dimension
int64_t channels = ndim == 3 ? input.size(0) : input.size(0) * input.size(1);
int64_t input_height = input.size(-2);
int64_t input_width = input.size(-1);
int64_t output_height = output_size[0];
int64_t output_width = output_size[1];
// parallel on dim of N, C
at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) {
for (const auto c : c10::irange(begin, end)) {
scalar_t* input_ptr = input_data + c * input_height * input_width;
scalar_t* output_ptr = output_data + c * output_height * output_width;
for (const auto oh : c10::irange(output_height)) {
int64_t ih0 = start_index(oh, output_height, input_height);
int64_t ih1 = end_index(oh, output_height, input_height);
int64_t kh = ih1 - ih0;
for (const auto ow : c10::irange(output_width)) {
int64_t iw0 = start_index(ow, output_width, input_width);
int64_t iw1 = end_index(ow, output_width, input_width);
int64_t kw = iw1 - iw0;
// compute local average
accscalar_t sum = 0;
for (const auto ih : c10::irange(ih0, ih1)) {
for (const auto iw : c10::irange(iw0, iw1)) {
sum += accscalar_t(input_ptr[ih * input_width + iw]);
}
}
output_ptr[oh * output_width + ow] = scalar_t(sum / kh / kw);
}
}
}
});
if (!output_.is_contiguous()) {
output_.copy_(output);
}
}
template <typename scalar_t>
typename std::enable_if_t<std::is_same_v<scalar_t, at::opmath_type<scalar_t>>, void>
cpu_adaptive_avg_pool_channels_last(
Tensor& output_,
const Tensor& input_,
IntArrayRef output_size) {
auto memory_format = at::MemoryFormat::ChannelsLast;
auto input = input_.contiguous(memory_format);
auto output = output_.contiguous(memory_format);
auto input_data = input.data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
int64_t nbatch = input.size(0);
int64_t channels = input.size(1);
int64_t input_height = input.size(2);
int64_t input_width = input.size(3);
int64_t output_height = output_size[0];
int64_t output_width = output_size[1];
using Vec = vec::Vectorized<scalar_t>;
// parallel on dim N, H, W
at::parallel_for(0, nbatch * output_height * output_width, 0, [&](int64_t begin, int64_t end) {
int64_t n = 0;
int64_t oh = 0;
int64_t ow = 0;
data_index_init(begin, n, nbatch, oh, output_height, ow, output_width);
for (const auto i : c10::irange(begin, end)) {
int64_t ih0 = start_index(oh, output_height, input_height);
int64_t ih1 = end_index(oh, output_height, input_height);
int64_t kh = ih1 - ih0;
int64_t iw0 = start_index(ow, output_width, input_width);
int64_t iw1 = end_index(ow, output_width, input_width);
int64_t kw = iw1 - iw0;
scalar_t* out = output_data + i * channels;
int64_t size = channels;
// Note: For oridinary usage scenario, each out lane should
// fit in L1 cache; otherwise consider block dim C.
// Pass I: zero the out lane
int64_t d1 = 0;
for (; d1 < size - (size % Vec::size()); d1 += Vec::size()) {
Vec out_vec = Vec(scalar_t(0));
out_vec.store(out + d1);
}
for (; d1 < size; d1++) {
out[d1] = scalar_t(0);
}
// Pass II: compute local sum
for (const auto ih : c10::irange(ih0, ih1)) {
for (const auto iw : c10::irange(iw0, iw1)) {
scalar_t* in = input_data + n * input_height * input_width * channels +
ih * input_width * channels + iw * channels;
int64_t d2 = 0;
for (; d2 < size - (size % Vec::size()); d2 += Vec::size()) {
Vec out_vec = Vec::loadu(out + d2) + Vec::loadu(in + d2);
out_vec.store(out + d2);
}
for (; d2 < size; d2++) {
out[d2] += in[d2];
}
}
}
// Pass III: compute local average
int64_t d3 = 0;
for (; d3 < size - (size % Vec::size()); d3 += Vec::size()) {
Vec out_vec = Vec::loadu(out + d3) / Vec(scalar_t(kh * kw));
out_vec.store(out + d3);
}
for (; d3 < size; d3++) {
out[d3] = out[d3] / kh / kw;
}
// move on to next output index
data_index_step(n, nbatch, oh, output_height, ow, output_width);
}
});
if (!output_.is_contiguous(memory_format)) {
output_.copy_(output);
}
}
template <typename scalar_t>
typename std::enable_if_t<!std::is_same_v<scalar_t, at::opmath_type<scalar_t>>, void>
cpu_adaptive_avg_pool_channels_last(
Tensor& output_,
const Tensor& input_,
IntArrayRef output_size) {
auto memory_format = at::MemoryFormat::ChannelsLast;
auto input = input_.contiguous(memory_format);
auto output = output_.contiguous(memory_format);
auto input_data = input.data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
int64_t nbatch = input.size(0);
int64_t channels = input.size(1);
int64_t input_height = input.size(2);
int64_t input_width = input.size(3);
int64_t output_height = output_size[0];
int64_t output_width = output_size[1];
using bVec = vec::Vectorized<scalar_t>;
using fVec = vec::Vectorized<float>;
// parallel on dim N, H, W
at::parallel_for(0, nbatch * output_height * output_width, 0, [&](int64_t begin, int64_t end) {
int64_t n = 0;
int64_t oh = 0;
int64_t ow = 0;
data_index_init(begin, n, nbatch, oh, output_height, ow, output_width);
// temp buffer for sum, use float as accumulation type
// can't reuse output buffer to store sum since it is BFloat16/Half
auto sum_arr = std::make_unique<float []>(channels);
float* sum = sum_arr.get();
for (const auto i : c10::irange(begin, end)) {
int64_t ih0 = start_index(oh, output_height, input_height);
int64_t ih1 = end_index(oh, output_height, input_height);
int64_t kh = ih1 - ih0;
int64_t iw0 = start_index(ow, output_width, input_width);
int64_t iw1 = end_index(ow, output_width, input_width);
int64_t kw = iw1 - iw0;
scalar_t* out = output_data + i * channels;
int64_t size = channels;
// Pass I: zero the out lane
int64_t d1 = 0;
for (; d1 < size - (size % fVec::size()); d1 += fVec::size()) {
fVec sum_fvec = fVec(float(0));
sum_fvec.store(sum + d1);
}
for (; d1 < size; d1++) {
sum[d1] = float(0);
}
// Pass II: compute local sum
for (const auto ih : c10::irange(ih0, ih1)) {
for (const auto iw : c10::irange(iw0, iw1)) {
scalar_t* in = input_data + n * input_height * input_width * channels +
ih * input_width * channels + iw * channels;
int64_t d2 = 0;
for (; d2 < size - (size % bVec::size()); d2 += bVec::size()) {
bVec data_bvec = bVec::loadu(in + d2);
fVec data_fvec0, data_fvec1;
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
fVec sum_fvec0 = fVec::loadu(sum + d2) + data_fvec0;
fVec sum_fvec1 = fVec::loadu(sum + d2 + fVec::size()) + data_fvec1;
sum_fvec0.store(sum + d2);
sum_fvec1.store(sum + d2 + fVec::size());
}
for (; d2 < size; d2++) {
sum[d2] += float(in[d2]);
}
}
}
// Pass III: compute local average
int64_t d3 = 0;
for (; d3 < size - (size % bVec::size()); d3 += bVec::size()) {
fVec out_fvec0 = fVec::loadu(sum + d3) / fVec(float(kh * kw));
fVec out_fvec1 = fVec::loadu(sum + d3 + fVec::size()) / fVec(float(kh * kw));
bVec out_bvec = convert_from_float<scalar_t>(out_fvec0, out_fvec1);
out_bvec.store(out + d3);
}
for (; d3 < size; d3++) {
out[d3] = scalar_t(sum[d3] / kh / kw);
}
// move on to next output index
data_index_step(n, nbatch, oh, output_height, ow, output_width);
}
});
if (!output_.is_contiguous(memory_format)) {
output_.copy_(output);
}
}
template <typename scalar_t>
void cpu_adaptive_avg_pool_backward(
Tensor& grad_input_,
const Tensor& grad_output_) {
auto grad_output = grad_output_.contiguous();
auto grad_input = grad_input_.contiguous();
auto grad_output_data = grad_output.data_ptr<scalar_t>();
auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
int64_t ndim = grad_output.ndimension();
// treat batch size and channels as one dimension
int64_t channels = ndim == 3 ? grad_output.size(0) : grad_output.size(0) * grad_output.size(1);
int64_t input_height = grad_input.size(-2);
int64_t input_width = grad_input.size(-1);
int64_t output_height = grad_output.size(-2);
int64_t output_width = grad_output.size(-1);
// parallel on dim of N, C
at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) {
for (const auto c : c10::irange(begin, end)) {
scalar_t* grad_input_ptr = grad_input_data + c * input_height * input_width;
scalar_t* grad_output_ptr = grad_output_data + c * output_height * output_width;
for (const auto oh : c10::irange(output_height)) {
int64_t ih0 = start_index(oh, output_height, input_height);
int64_t ih1 = end_index(oh, output_height, input_height);
int64_t kh = ih1 - ih0;
for (const auto ow : c10::irange(output_width)) {
int64_t iw0 = start_index(ow, output_width, input_width);
int64_t iw1 = end_index(ow, output_width, input_width);
int64_t kw = iw1 - iw0;
scalar_t grad_delta = grad_output_ptr[oh * output_width + ow] / kh / kw;
for (const auto ih : c10::irange(ih0, ih1)) {
for (const auto iw : c10::irange(iw0, iw1)) {
grad_input_ptr[ih * input_width + iw] += grad_delta;
}
}
}
}
}
});
if (!grad_input_.is_contiguous()) {
grad_input_.copy_(grad_input);
}
}
template <typename scalar_t>
void cpu_adaptive_avg_pool_backward_channels_last(
Tensor& grad_input_,
const Tensor& grad_output_) {
auto memory_format = at::MemoryFormat::ChannelsLast;
auto grad_input = grad_input_.contiguous(memory_format);
auto grad_output = grad_output_.contiguous(memory_format);
auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
auto grad_output_data = grad_output.data_ptr<scalar_t>();
int64_t nbatch = grad_input.size(0);
int64_t channels = grad_input.size(1);
int64_t input_height = grad_input.size(2);
int64_t input_width = grad_input.size(3);
int64_t output_height = grad_output.size(2);
int64_t output_width = grad_output.size(3);
using Vec = vec::Vectorized<scalar_t>;
// parallel on dim N
at::parallel_for(0, nbatch, 0, [&](int64_t begin, int64_t end) {
for (const auto n : c10::irange(begin, end)) {
scalar_t* grad_input_ptr = grad_input_data + n * input_height * input_width * channels;
scalar_t* grad_output_ptr = grad_output_data + n * output_height * output_width * channels;
for (const auto oh : c10::irange(output_height)) {
int64_t ih0 = start_index(oh, output_height, input_height);
int64_t ih1 = end_index(oh, output_height, input_height);
int64_t kh = ih1 - ih0;
for (const auto ow : c10::irange(output_width)) {
int64_t iw0 = start_index(ow, output_width, input_width);
int64_t iw1 = end_index(ow, output_width, input_width);
int64_t kw = iw1 - iw0;
scalar_t* gout = grad_output_ptr + oh * output_width * channels + ow * channels;
int64_t size = channels;
for (const auto ih : c10::irange(ih0, ih1)) {
for (const auto iw : c10::irange(iw0, iw1)) {
scalar_t* gin = grad_input_ptr + ih * input_width * channels + iw * channels;
int64_t d = 0;
for (; d < size - (size % Vec::size()); d += Vec::size()) {
Vec gin_vec = Vec::loadu(gin + d) + Vec::loadu(gout + d) / Vec(scalar_t(kh * kw));
gin_vec.store(gin + d);
}
for (; d < size; d++) {
gin[d] += gout[d] / kh / kw;
}
}
}
}
}
}
});
if (!grad_input_.is_contiguous(memory_format)) {
grad_input_.copy_(grad_input);
}
}
void adaptive_avg_pool2d_kernel_impl(
Tensor& output,
const Tensor& input,
IntArrayRef output_size) {
switch (input.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "adaptive_avg_pool2d", [&] {
using param_t = at::opmath_type<scalar_t>;
cpu_adaptive_avg_pool<scalar_t, /*accscalar_t*/param_t>(output, input, output_size);
});
break;
}
case at::MemoryFormat::ChannelsLast: {
AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "adaptive_avg_pool2d_channels_last", [&]{
cpu_adaptive_avg_pool_channels_last<scalar_t>(output, input, output_size);
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
void adapative_avg_pool2d_backward_kernel_impl(
Tensor& grad_input,
const Tensor& grad_output) {
switch (grad_output.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "adaptive_avg_pool2d_backward", [&] {
cpu_adaptive_avg_pool_backward<scalar_t>(grad_input, grad_output);
});
break;
}
case at::MemoryFormat::ChannelsLast: {
AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "adaptive_avg_pool2d_backward_channels_last", [&]{
cpu_adaptive_avg_pool_backward_channels_last<scalar_t>(grad_input, grad_output);
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
} // anonymous namespace
REGISTER_DISPATCH(adaptive_avg_pool2d_kernel, &adaptive_avg_pool2d_kernel_impl);
REGISTER_DISPATCH(adaptive_avg_pool2d_backward_kernel, &adapative_avg_pool2d_backward_kernel_impl);
} // at::native