forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_utils.py
409 lines (344 loc) · 13.2 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# Copyright 2020 Deepmind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mesh data utilities."""
import matplotlib.pyplot as plt
import modules
from mpl_toolkits import mplot3d # pylint: disable=unused-import
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import networkx as nx
import numpy as np
import six
from six.moves import range
import tensorflow.compat.v1 as tf
import tensorflow_probability as tfp
tfd = tfp.distributions
def random_shift(vertices, shift_factor=0.25):
"""Apply random shift to vertices."""
max_shift_pos = tf.cast(255 - tf.reduce_max(vertices, axis=0), tf.float32)
max_shift_pos = tf.maximum(max_shift_pos, 1e-9)
max_shift_neg = tf.cast(tf.reduce_min(vertices, axis=0), tf.float32)
max_shift_neg = tf.maximum(max_shift_neg, 1e-9)
shift = tfd.TruncatedNormal(
tf.zeros([1, 3]), shift_factor*255, -max_shift_neg,
max_shift_pos).sample()
shift = tf.cast(shift, tf.int32)
vertices += shift
return vertices
def make_vertex_model_dataset(ds, apply_random_shift=False):
"""Prepare dataset for vertex model training."""
def _vertex_model_map_fn(example):
vertices = example['vertices']
# Randomly shift vertices
if apply_random_shift:
vertices = random_shift(vertices)
# Re-order vertex coordinates as (z, y, x).
vertices_permuted = tf.stack(
[vertices[:, 2], vertices[:, 1], vertices[:, 0]], axis=-1)
# Flatten quantized vertices, reindex starting from 1, and pad with a
# zero stopping token.
vertices_flat = tf.reshape(vertices_permuted, [-1])
example['vertices_flat'] = tf.pad(vertices_flat + 1, [[0, 1]])
# Create mask to indicate valid tokens after padding and batching.
example['vertices_flat_mask'] = tf.ones_like(
example['vertices_flat'], dtype=tf.float32)
return example
return ds.map(_vertex_model_map_fn)
def make_face_model_dataset(
ds, apply_random_shift=False, shuffle_vertices=True, quantization_bits=8):
"""Prepare dataset for face model training."""
def _face_model_map_fn(example):
vertices = example['vertices']
# Randomly shift vertices
if apply_random_shift:
vertices = random_shift(vertices)
example['num_vertices'] = tf.shape(vertices)[0]
# Optionally shuffle vertices and re-order faces to match
if shuffle_vertices:
permutation = tf.random_shuffle(tf.range(example['num_vertices']))
vertices = tf.gather(vertices, permutation)
face_permutation = tf.concat(
[tf.constant([0, 1], dtype=tf.int32), tf.argsort(permutation) + 2],
axis=0)
example['faces'] = tf.cast(
tf.gather(face_permutation, example['faces']), tf.int64)
# Vertices are quantized. So convert to floats for input to face model
example['vertices'] = modules.dequantize_verts(vertices, quantization_bits)
example['vertices_mask'] = tf.ones_like(
example['vertices'][..., 0], dtype=tf.float32)
example['faces_mask'] = tf.ones_like(example['faces'], dtype=tf.float32)
return example
return ds.map(_face_model_map_fn)
def read_obj(obj_path):
"""Read vertices and faces from .obj file."""
vertex_list = []
flat_vertices_list = []
flat_vertices_indices = {}
flat_triangles = []
with open(obj_path) as obj_file:
for line in obj_file:
tokens = line.split()
if not tokens:
continue
line_type = tokens[0]
# We skip lines not starting with v or f.
if line_type == 'v':
vertex_list.append([float(x) for x in tokens[1:]])
elif line_type == 'f':
triangle = []
for i in range(len(tokens) - 1):
vertex_name = tokens[i + 1]
if vertex_name in flat_vertices_indices:
triangle.append(flat_vertices_indices[vertex_name])
continue
flat_vertex = []
for index in six.ensure_str(vertex_name).split('/'):
if not index:
continue
# obj triangle indices are 1 indexed, so subtract 1 here.
flat_vertex += vertex_list[int(index) - 1]
flat_vertex_index = len(flat_vertices_list)
flat_vertices_list.append(flat_vertex)
flat_vertices_indices[vertex_name] = flat_vertex_index
triangle.append(flat_vertex_index)
flat_triangles.append(triangle)
return np.array(flat_vertices_list, dtype=np.float32), flat_triangles
def write_obj(vertices, faces, file_path, transpose=True, scale=1.):
"""Write vertices and faces to obj."""
if transpose:
vertices = vertices[:, [1, 2, 0]]
vertices *= scale
if faces is not None:
if min(min(faces)) == 0:
f_add = 1
else:
f_add = 0
with open(file_path, 'w') as f:
for v in vertices:
f.write('v {} {} {}\n'.format(v[0], v[1], v[2]))
for face in faces:
line = 'f'
for i in face:
line += ' {}'.format(i + f_add)
line += '\n'
f.write(line)
def quantize_verts(verts, n_bits=8):
"""Convert vertices in [-1., 1.] to discrete values in [0, n_bits**2 - 1]."""
min_range = -0.5
max_range = 0.5
range_quantize = 2**n_bits - 1
verts_quantize = (verts - min_range) * range_quantize / (
max_range - min_range)
return verts_quantize.astype('int32')
def dequantize_verts(verts, n_bits=8, add_noise=False):
"""Convert quantized vertices to floats."""
min_range = -0.5
max_range = 0.5
range_quantize = 2**n_bits - 1
verts = verts.astype('float32')
verts = verts * (max_range - min_range) / range_quantize + min_range
if add_noise:
verts += np.random.uniform(size=verts.shape) * (1 / range_quantize)
return verts
def face_to_cycles(face):
"""Find cycles in face."""
g = nx.Graph()
for v in range(len(face) - 1):
g.add_edge(face[v], face[v + 1])
g.add_edge(face[-1], face[0])
return list(nx.cycle_basis(g))
def flatten_faces(faces):
"""Converts from list of faces to flat face array with stopping indices."""
if not faces:
return np.array([0])
else:
l = [f + [-1] for f in faces[:-1]]
l += [faces[-1] + [-2]]
return np.array([item for sublist in l for item in sublist]) + 2 # pylint: disable=g-complex-comprehension
def unflatten_faces(flat_faces):
"""Converts from flat face sequence to a list of separate faces."""
def group(seq):
g = []
for el in seq:
if el == 0 or el == -1:
yield g
g = []
else:
g.append(el - 1)
yield g
outputs = list(group(flat_faces - 1))[:-1]
# Remove empty faces
return [o for o in outputs if len(o) > 2]
def center_vertices(vertices):
"""Translate the vertices so that bounding box is centered at zero."""
vert_min = vertices.min(axis=0)
vert_max = vertices.max(axis=0)
vert_center = 0.5 * (vert_min + vert_max)
return vertices - vert_center
def normalize_vertices_scale(vertices):
"""Scale the vertices so that the long diagonal of the bounding box is one."""
vert_min = vertices.min(axis=0)
vert_max = vertices.max(axis=0)
extents = vert_max - vert_min
scale = np.sqrt(np.sum(extents**2))
return vertices / scale
def quantize_process_mesh(vertices, faces, tris=None, quantization_bits=8):
"""Quantize vertices, remove resulting duplicates and reindex faces."""
vertices = quantize_verts(vertices, quantization_bits)
vertices, inv = np.unique(vertices, axis=0, return_inverse=True)
# Sort vertices by z then y then x.
sort_inds = np.lexsort(vertices.T)
vertices = vertices[sort_inds]
# Re-index faces and tris to re-ordered vertices.
faces = [np.argsort(sort_inds)[inv[f]] for f in faces]
if tris is not None:
tris = np.array([np.argsort(sort_inds)[inv[t]] for t in tris])
# Merging duplicate vertices and re-indexing the faces causes some faces to
# contain loops (e.g [2, 3, 5, 2, 4]). Split these faces into distinct
# sub-faces.
sub_faces = []
for f in faces:
cliques = face_to_cycles(f)
for c in cliques:
c_length = len(c)
# Only append faces with more than two verts.
if c_length > 2:
d = np.argmin(c)
# Cyclically permute faces just that first index is the smallest.
sub_faces.append([c[(d + i) % c_length] for i in range(c_length)])
faces = sub_faces
if tris is not None:
tris = np.array([v for v in tris if len(set(v)) == len(v)])
# Sort faces by lowest vertex indices. If two faces have the same lowest
# index then sort by next lowest and so on.
faces.sort(key=lambda f: tuple(sorted(f)))
if tris is not None:
tris = tris.tolist()
tris.sort(key=lambda f: tuple(sorted(f)))
tris = np.array(tris)
# After removing degenerate faces some vertices are now unreferenced.
# Remove these.
num_verts = vertices.shape[0]
vert_connected = np.equal(
np.arange(num_verts)[:, None], np.hstack(faces)[None]).any(axis=-1)
vertices = vertices[vert_connected]
# Re-index faces and tris to re-ordered vertices.
vert_indices = (
np.arange(num_verts) - np.cumsum(1 - vert_connected.astype('int')))
faces = [vert_indices[f].tolist() for f in faces]
if tris is not None:
tris = np.array([vert_indices[t].tolist() for t in tris])
return vertices, faces, tris
def load_process_mesh(mesh_obj_path, quantization_bits=8):
"""Load obj file and process."""
# Load mesh
vertices, faces = read_obj(mesh_obj_path)
# Transpose so that z-axis is vertical.
vertices = vertices[:, [2, 0, 1]]
# Translate the vertices so that bounding box is centered at zero.
vertices = center_vertices(vertices)
# Scale the vertices so that the long diagonal of the bounding box is equal
# to one.
vertices = normalize_vertices_scale(vertices)
# Quantize and sort vertices, remove resulting duplicates, sort and reindex
# faces.
vertices, faces, _ = quantize_process_mesh(
vertices, faces, quantization_bits=quantization_bits)
# Flatten faces and add 'new face' = 1 and 'stop' = 0 tokens.
faces = flatten_faces(faces)
# Discard degenerate meshes without faces.
return {
'vertices': vertices,
'faces': faces,
}
def plot_meshes(mesh_list,
ax_lims=0.3,
fig_size=4,
el=30,
rot_start=120,
vert_size=10,
vert_alpha=0.75,
n_cols=4):
"""Plots mesh data using matplotlib."""
n_plot = len(mesh_list)
n_cols = np.minimum(n_plot, n_cols)
n_rows = np.ceil(n_plot / n_cols).astype('int')
fig = plt.figure(figsize=(fig_size * n_cols, fig_size * n_rows))
for p_inc, mesh in enumerate(mesh_list):
for key in [
'vertices', 'faces', 'vertices_conditional', 'pointcloud', 'class_name'
]:
if key not in list(mesh.keys()):
mesh[key] = None
ax = fig.add_subplot(n_rows, n_cols, p_inc + 1, projection='3d')
if mesh['faces'] is not None:
if mesh['vertices_conditional'] is not None:
face_verts = np.concatenate(
[mesh['vertices_conditional'], mesh['vertices']], axis=0)
else:
face_verts = mesh['vertices']
collection = []
for f in mesh['faces']:
collection.append(face_verts[f])
plt_mesh = Poly3DCollection(collection)
plt_mesh.set_edgecolor((0., 0., 0., 0.3))
plt_mesh.set_facecolor((1, 0, 0, 0.2))
ax.add_collection3d(plt_mesh)
if mesh['vertices'] is not None:
ax.scatter3D(
mesh['vertices'][:, 0],
mesh['vertices'][:, 1],
mesh['vertices'][:, 2],
lw=0.,
s=vert_size,
c='g',
alpha=vert_alpha)
if mesh['vertices_conditional'] is not None:
ax.scatter3D(
mesh['vertices_conditional'][:, 0],
mesh['vertices_conditional'][:, 1],
mesh['vertices_conditional'][:, 2],
lw=0.,
s=vert_size,
c='b',
alpha=vert_alpha)
if mesh['pointcloud'] is not None:
ax.scatter3D(
mesh['pointcloud'][:, 0],
mesh['pointcloud'][:, 1],
mesh['pointcloud'][:, 2],
lw=0.,
s=2.5 * vert_size,
c='b',
alpha=1.)
ax.set_xlim(-ax_lims, ax_lims)
ax.set_ylim(-ax_lims, ax_lims)
ax.set_zlim(-ax_lims, ax_lims)
ax.view_init(el, rot_start)
display_string = ''
if mesh['faces'] is not None:
display_string += 'Num. faces: {}\n'.format(len(collection))
if mesh['vertices'] is not None:
num_verts = mesh['vertices'].shape[0]
if mesh['vertices_conditional'] is not None:
num_verts += mesh['vertices_conditional'].shape[0]
display_string += 'Num. verts: {}\n'.format(num_verts)
if mesh['class_name'] is not None:
display_string += 'Synset: {}'.format(mesh['class_name'])
if mesh['pointcloud'] is not None:
display_string += 'Num. pointcloud: {}\n'.format(
mesh['pointcloud'].shape[0])
ax.text2D(0.05, 0.8, display_string, transform=ax.transAxes)
plt.subplots_adjust(
left=0., right=1., bottom=0., top=1., wspace=0.025, hspace=0.025)
plt.show()