forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
keyboard_utils.py
88 lines (75 loc) · 2.87 KB
/
keyboard_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Lint as: python3
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Keyboard utils."""
import numpy as np
from option_keyboard import configs
from option_keyboard import environment_wrappers
from option_keyboard import experiment
from option_keyboard import keyboard_agent
from option_keyboard import scavenger
def create_and_train_keyboard(num_episodes,
policy_weights=None,
export_path=None):
"""Train an option keyboard."""
if policy_weights is None:
policy_weights = np.eye(2, dtype=np.float32)
env_config = configs.get_pretrain_config()
env = scavenger.Scavenger(**env_config)
env = environment_wrappers.EnvironmentWithLogging(env)
agent = keyboard_agent.Agent(
obs_spec=env.observation_spec(),
action_spec=env.action_spec(),
policy_weights=policy_weights,
network_kwargs=dict(
output_sizes=(64, 128),
activate_final=True,
),
epsilon=0.1,
additional_discount=0.9,
batch_size=10,
optimizer_name="AdamOptimizer",
optimizer_kwargs=dict(learning_rate=3e-4,))
if num_episodes:
experiment.run(env, agent, num_episodes=num_episodes)
agent.export(export_path)
return agent
def create_and_train_keyboard_with_phi(num_episodes,
phi_model_path,
policy_weights,
export_path=None):
"""Train an option keyboard."""
env_config = configs.get_pretrain_config()
env = scavenger.Scavenger(**env_config)
env = environment_wrappers.EnvironmentWithLogging(env)
env = environment_wrappers.EnvironmentWithLearnedPhi(env, phi_model_path)
agent = keyboard_agent.Agent(
obs_spec=env.observation_spec(),
action_spec=env.action_spec(),
policy_weights=policy_weights,
network_kwargs=dict(
output_sizes=(64, 128),
activate_final=True,
),
epsilon=0.1,
additional_discount=0.9,
batch_size=10,
optimizer_name="AdamOptimizer",
optimizer_kwargs=dict(learning_rate=3e-4,))
if num_episodes:
experiment.run(env, agent, num_episodes=num_episodes)
agent.export(export_path)
return agent