forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
secstruct.py
93 lines (77 loc) · 3.42 KB
/
secstruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Lint as: python3.
# Copyright 2019 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Layer for modelling and scoring secondary structure."""
import os
from absl import logging
import numpy as np
import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import
# 8-class classes (Q8)
SECONDARY_STRUCTURES = '-HETSGBI'
# Equivalence classes for 3-class (Q3) from Li & Yu 2016.
# See http://www.cmbi.ru.nl/dssp.html for letter explanations.
Q3_MAP = ['-TSGIB', 'H', 'E']
def make_q3_matrices():
"""Generate mapping matrices for secstruct Q8:Q3 equivalence classes."""
dimension = len(SECONDARY_STRUCTURES)
q3_map_matrix = np.zeros((dimension, len(Q3_MAP)))
q3_lookup = np.zeros((dimension,), dtype=np.int32)
for i, eclass in enumerate(Q3_MAP): # equivalence classes
for m in eclass: # Members of the class.
ss_type = SECONDARY_STRUCTURES.index(m)
q3_map_matrix[ss_type, i] = 1.0
q3_lookup[ss_type] = i
return q3_map_matrix, q3_lookup
class Secstruct(object):
"""Make a layer that computes hierarchical secstruct."""
# Build static, shared structures:
q3_map_matrix, q3_lookup = make_q3_matrices()
static_dimension = len(SECONDARY_STRUCTURES)
def __init__(self, name='secstruct'):
self.name = name
self._dimension = Secstruct.static_dimension
def make_layer_new(self, activations):
"""Make the layer."""
with tf.variable_scope(self.name, reuse=tf.AUTO_REUSE):
logging.info('Creating secstruct %s', activations)
self.logits = tf.contrib.layers.linear(activations, self._dimension)
self.ss_q8_probs = tf.nn.softmax(self.logits)
self.ss_q3_probs = tf.matmul(
self.ss_q8_probs, tf.constant(self.q3_map_matrix, dtype=tf.float32))
def get_q8_probs(self):
return self.ss_q8_probs
def save_secstructs(dump_dir_path, name, index, sequence, probs,
label='Deepmind secstruct'):
"""Write secstruct prob distributions to an ss2 file.
Can be overloaded to write out asa values too.
Args:
dump_dir_path: directory where to write files.
name: name of domain
index: index number of multiple samples. (or None for no index)
sequence: string of L residue labels
probs: L x D matrix of probabilities. L is length of sequence,
D is probability dimension (usually 3).
label: A label for the file.
"""
filename = os.path.join(dump_dir_path, '%s.ss2' % name)
if index is not None:
filename = os.path.join(dump_dir_path, '%s_%04d.ss2' % (name, index))
with tf.io.gfile.GFile(filename, 'w') as gf:
logging.info('Saving secstruct to %s', filename)
gf.write('# %s CLASSES [%s] %s sample %s\n\n' % (
label, ''.join(SECONDARY_STRUCTURES[:probs.shape[1]]), name, index))
for l in range(probs.shape[0]):
ss = SECONDARY_STRUCTURES[np.argmax(probs[l, :])]
gf.write('%4d %1s %1s %s\n' % (l + 1, sequence[l], ss, ''.join(
[('%6.3f' % p) for p in probs[l, :]])))