-
Notifications
You must be signed in to change notification settings - Fork 2
/
e3SummitRadar.m
84 lines (69 loc) · 3.55 KB
/
e3SummitRadar.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
%% Evaluate mixture implementation on Mobile Robot Dataset.
%
% Evaluation Example:
% "Mobile Robot Dataset"
%
% Corresponding Publication:
% "A Credible and Robust approach to Ego-Motion Estimation using an
% Automotive Radar" (<a href="https://mytuc.org/creme">details</a>)
%
% Here we evaluate on a real world dataset collected with our mobile robot
% (an SummitXL from robotnik with customized sensor configuration).
% @author Sven Lange (TU Chemnitz, ET/IT, Prozessautomatisierung)
% This file is part of
% CREME - Credible Radar Ego-Motion Estimation
%
% Copyright (C) 2022 Chair of Automation Technology / TU Chemnitz
% For more information see https://mytuc.org/creme
%
% CREME is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% CREME is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this software. If not, see <http://www.gnu.org/licenses/>.
%
% Contact Information: Sven Lange ([email protected])
[sPath, sFilename] = fileparts(mfilename('fullpath'));
eProps = struct('experimentName','Turmbau1');
eProps.workingFolder = fullfile(sPath,'e3Data',eProps.experimentName);
load(fullfile(eProps.workingFolder, ['setup_' eProps.experimentName]),'experiment');
%% Run the algorithms on the generated dataset with the common properties:
resultProps = struct(...
'gmmImplementation' , 'MaxSumMix', ...
'doNumericalHessian' , false, ...
'useScaling' , 2, ...
'additionalDopplerScaling', 2, ...
'outlierWeight' , uint8(20), ...
'useCached' , 'ask', ...
'workingFolder' ,fullfile(eProps.workingFolder) ...
);
prefix = 'Summit-';
%% Only as registration Problem without Doppler information
resultProps.resultName = [prefix 'PSR-MSM'];
resultProps.useDoppler = false;
fprintf('Doing %s\n', resultProps.resultName);
libmix4sam.registration.runRadarExperiment(experiment, resultProps);
%% This time with Doppler information
resultProps.resultName = [prefix 'Doppler-MSM'];
resultProps.useDoppler = true;
fprintf('Doing %s\n', resultProps.resultName);
libmix4sam.registration.runRadarExperiment(experiment, resultProps);
%% Solve by using Sum-Approximation of the cost function
resultProps.resultName = [prefix 'PSR-Approx'];
resultProps.useDoppler = false;
resultProps.gmmImplementation = 'Sum';
fprintf('Doing %s\n', resultProps.resultName);
libmix4sam.wrappers.motionEstimation.runRadarExperiment(experiment, resultProps);
%% Solve by using Sum-Approximation of the cost function
resultProps.resultName = [prefix 'Doppler-Approx'];
resultProps.useDoppler = true;
resultProps.gmmImplementation = 'Sum';
fprintf('Doing %s\n', resultProps.resultName);
libmix4sam.wrappers.motionEstimation.runRadarExperiment(experiment, resultProps);