-
Notifications
You must be signed in to change notification settings - Fork 1
/
config.py
46 lines (39 loc) · 1.21 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Kenny Schlegel, Peer Neubert, Peter Protzel
#
# HDC-MiniROCKET : Explicit Time Encoding in Time Series Classification with Hyperdimensional Computing
# Copyright (C) 2022 Chair of Automation Technology / TU Chemnitz
import numpy as np
def default_init(self):
self.norm_hdc_output = True
self.best_scale = False
self.scales = np.logspace(0,3,7,base=2)-1
# general parameters
self.n_time_measures = 1
self.seed = 0
return self
class Config_orig(object):
"""
configuration for classification on defined scale
"""
def __init__(self):
# HDC Minirocket Config
self = default_init(self)
self.note = ''
class Config_orig_auto(object):
"""
configuration for classification with automatically selected the best scaling parameter (grid search)
"""
def __init__(self):
# HDC Minirocket Config
self = default_init(self)
self.best_scale = True
self.note = 'auto'
class Config_time_measure(object):
"""
configuration for classification with time measuring
"""
def __init__(self):
# HDC Minirocket Config
self = default_init(self)
self.n_time_measures = 5
self.note = 'time_measure'