diff --git a/python/solid_dmft/postprocessing/plot_correlated_bands.py b/python/solid_dmft/postprocessing/plot_correlated_bands.py index 8cca5c75..42a2c842 100644 --- a/python/solid_dmft/postprocessing/plot_correlated_bands.py +++ b/python/solid_dmft/postprocessing/plot_correlated_bands.py @@ -245,8 +245,7 @@ def upscale(quantity, n_orb): return quantity * np.identity(n_orb) def invert_and_trace(w, eta, mu, e_mat, sigma, trace, proj=None): # inversion is automatically vectorized over first axis of 3D array (omega first index now) Glatt = np.linalg.inv(w + eta[None, ...] + mu[None, ...] - e_mat[None, ...] - sigma.transpose(2, 0, 1)) - # TODO: fix this is only correct for diagonal Sigma - A_w_nu = -1.0/np.pi * np.diagonal(Glatt, axis1=1, axis2=2).imag + A_w_nu = -1.0/(2.0 * np.pi)* np.diagonal(Glatt - Glatt.transpose(0,2,1).conj(), axis1=1, axis2=2).imag if isinstance(proj, np.ndarray): A_w_nu = A_w_nu * proj[None, :] if trace: @@ -325,7 +324,7 @@ def upscale(quantity, n_orb): return quantity * np.identity(n_orb) def invert_and_trace(w, eta, mu, e_mat, sigma, proj=None): # inversion is automatically vectorized over first axis of 3D array (omega first index now) Glatt = np.linalg.inv(w + eta + mu - e_mat - sigma) - A_nu = -1.0/np.pi * np.diagonal(Glatt).imag + A_nu = -1.0/(2.0 * np.pi)* np.diagonal(Glatt - Glatt.transpose().conj()).imag if isinstance(proj, np.ndarray): A_nu = A_nu * proj return np.sum(A_nu)