forked from fudan-generative-vision/champ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
319 lines (263 loc) · 9.8 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import argparse
import logging
import os
import os.path as osp
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
import torch.utils.checkpoint
from torchvision import transforms
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available
from omegaconf import OmegaConf
from PIL import Image
from transformers import CLIPVisionModelWithProjection
from models.unet_2d_condition import UNet2DConditionModel
from models.unet_3d import UNet3DConditionModel
from models.mutual_self_attention import ReferenceAttentionControl
from models.guidance_encoder import GuidanceEncoder
from models.champ_model import ChampModel
from pipelines.pipeline_aggregation import MultiGuidance2LongVideoPipeline
from utils.video_utils import resize_tensor_frames, save_videos_grid, pil_list_to_tensor
def setup_savedir(cfg):
time_str = datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
if cfg.exp_name is None:
savedir = f"results/exp-{time_str}"
else:
savedir = f"results/{cfg.exp_name}-{time_str}"
os.makedirs(savedir, exist_ok=True)
return savedir
def setup_guidance_encoder(cfg):
guidance_encoder_group = dict()
if cfg.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
for guidance_type in cfg.guidance_types:
guidance_encoder_group[guidance_type] = GuidanceEncoder(
guidance_embedding_channels=cfg.guidance_encoder_kwargs.guidance_embedding_channels,
guidance_input_channels=cfg.guidance_encoder_kwargs.guidance_input_channels,
block_out_channels=cfg.guidance_encoder_kwargs.block_out_channels,
).to(device="cuda", dtype=weight_dtype)
return guidance_encoder_group
def process_semantic_map(semantic_map_path: Path):
image_name = semantic_map_path.name
mask_path = semantic_map_path.parent.parent / "mask" / image_name
semantic_array = np.array(Image.open(semantic_map_path))
mask_array = np.array(Image.open(mask_path).convert("RGB"))
semantic_pil = Image.fromarray(np.where(mask_array > 0, semantic_array, 0))
return semantic_pil
def combine_guidance_data(cfg):
guidance_types = cfg.guidance_types
guidance_data_folder = cfg.data.guidance_data_folder
guidance_pil_group = dict()
for guidance_type in guidance_types:
guidance_pil_group[guidance_type] = []
guidance_image_lst = sorted(
Path(osp.join(guidance_data_folder, guidance_type)).iterdir()
)
guidance_image_lst = (
guidance_image_lst
if not cfg.data.frame_range
else guidance_image_lst[cfg.data.frame_range[0]:cfg.data.frame_range[1]]
)
for guidance_image_path in guidance_image_lst:
# Add black background to semantic map
if guidance_type == "semantic_map":
guidance_pil_group[guidance_type] += [
process_semantic_map(guidance_image_path)
]
else:
guidance_pil_group[guidance_type] += [
Image.open(guidance_image_path).convert("RGB")
]
# get video length from the first guidance sequence
first_guidance_length = len(list(guidance_pil_group.values())[0])
# ensure all guidance sequences are of equal length
assert all(
len(sublist) == first_guidance_length
for sublist in list(guidance_pil_group.values())
)
return guidance_pil_group, first_guidance_length
def inference(
cfg,
vae,
image_enc,
model,
scheduler,
ref_image_pil,
guidance_pil_group,
video_length,
width,
height,
device="cuda",
dtype=torch.float16,
):
reference_unet = model.reference_unet
denoising_unet = model.denoising_unet
guidance_types = cfg.guidance_types
guidance_encoder_group = {
f"guidance_encoder_{g}": getattr(model, f"guidance_encoder_{g}")
for g in guidance_types
}
generator = torch.Generator(device=device)
generator.manual_seed(cfg.seed)
pipeline = MultiGuidance2LongVideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
**guidance_encoder_group,
scheduler=scheduler,
)
pipeline = pipeline.to(device, dtype)
video = pipeline(
ref_image_pil,
guidance_pil_group,
width,
height,
video_length,
num_inference_steps=cfg.num_inference_steps,
guidance_scale=cfg.guidance_scale,
generator=generator,
).videos
del pipeline
torch.cuda.empty_cache()
return video
def main(cfg):
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
save_dir = setup_savedir(cfg)
logging.info(f"Running inference ...")
# setup pretrained models
if cfg.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
sched_kwargs = OmegaConf.to_container(cfg.noise_scheduler_kwargs)
if cfg.enable_zero_snr:
sched_kwargs.update(
rescale_betas_zero_snr=True,
timestep_spacing="trailing",
prediction_type="v_prediction",
)
noise_scheduler = DDIMScheduler(**sched_kwargs)
sched_kwargs.update({"beta_schedule": "scaled_linear"})
image_enc = CLIPVisionModelWithProjection.from_pretrained(
cfg.image_encoder_path,
).to(dtype=weight_dtype, device="cuda")
vae = AutoencoderKL.from_pretrained(cfg.vae_model_path).to(
dtype=weight_dtype, device="cuda"
)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
cfg.base_model_path,
cfg.motion_module_path,
subfolder="unet",
unet_additional_kwargs=cfg.unet_additional_kwargs,
).to(dtype=weight_dtype, device="cuda")
reference_unet = UNet2DConditionModel.from_pretrained(
cfg.base_model_path,
subfolder="unet",
).to(device="cuda", dtype=weight_dtype)
guidance_encoder_group = setup_guidance_encoder(cfg)
ckpt_dir = cfg.ckpt_dir
denoising_unet.load_state_dict(
torch.load(
osp.join(ckpt_dir, f"denoising_unet.pth"),
map_location="cpu",
),
strict=False,
)
reference_unet.load_state_dict(
torch.load(
osp.join(ckpt_dir, f"reference_unet.pth"),
map_location="cpu",
),
strict=False,
)
for guidance_type, guidance_encoder_module in guidance_encoder_group.items():
guidance_encoder_module.load_state_dict(
torch.load(
osp.join(ckpt_dir, f"guidance_encoder_{guidance_type}.pth"),
map_location="cpu",
),
strict=False,
)
reference_control_writer = ReferenceAttentionControl(
reference_unet,
do_classifier_free_guidance=False,
mode="write",
fusion_blocks="full",
)
reference_control_reader = ReferenceAttentionControl(
denoising_unet,
do_classifier_free_guidance=False,
mode="read",
fusion_blocks="full",
)
model = ChampModel(
reference_unet=reference_unet,
denoising_unet=denoising_unet,
reference_control_writer=reference_control_writer,
reference_control_reader=reference_control_reader,
guidance_encoder_group=guidance_encoder_group,
).to("cuda", dtype=weight_dtype)
if cfg.enable_xformers_memory_efficient_attention:
if is_xformers_available():
reference_unet.enable_xformers_memory_efficient_attention()
denoising_unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError(
"xformers is not available. Make sure it is installed correctly"
)
ref_image_path = cfg.data.ref_image_path
ref_image_pil = Image.open(ref_image_path)
ref_image_w, ref_image_h = ref_image_pil.size
guidance_pil_group, video_length = combine_guidance_data(cfg)
result_video_tensor = inference(
cfg=cfg,
vae=vae,
image_enc=image_enc,
model=model,
scheduler=noise_scheduler,
ref_image_pil=ref_image_pil,
guidance_pil_group=guidance_pil_group,
video_length=video_length,
width=cfg.width,
height=cfg.height,
device="cuda",
dtype=weight_dtype,
) # (1, c, f, h, w)
result_video_tensor = resize_tensor_frames(
result_video_tensor, (ref_image_h, ref_image_w)
)
save_videos_grid(result_video_tensor, osp.join(save_dir, "animation.mp4"))
ref_video_tensor = transforms.ToTensor()(ref_image_pil)[None, :, None, ...].repeat(
1, 1, video_length, 1, 1
)
guidance_video_tensor_lst = []
for guidance_pil_lst in guidance_pil_group.values():
guidance_video_tensor_lst += [
pil_list_to_tensor(guidance_pil_lst, size=(ref_image_h, ref_image_w))
]
guidance_video_tensor = torch.stack(guidance_video_tensor_lst, dim=0)
grid_video = torch.cat([ref_video_tensor, result_video_tensor], dim=0)
grid_video_wguidance = torch.cat(
[ref_video_tensor, result_video_tensor, guidance_video_tensor], dim=0
)
save_videos_grid(grid_video, osp.join(save_dir, "grid.mp4"))
save_videos_grid(grid_video_wguidance, osp.join(save_dir, "grid_wguidance.mp4"))
logging.info(f"Inference completed, results saved in {save_dir}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/inference.yaml")
args = parser.parse_args()
if args.config[-5:] == ".yaml":
cfg = OmegaConf.load(args.config)
else:
raise ValueError("Do not support this format config file")
main(cfg)