Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Parsing YOLO Region output部分在嵌入式设备上耗时过长 #65

Open
Chain-Mao opened this issue Jul 2, 2022 · 3 comments
Open

Comments

@Chain-Mao
Copy link

请问作者,Parsing YOLO Region output在树莓派上耗时达到65ms左右,严重干扰了实时检测效果,请问这部分是解析推理后的数据吗,有没有什么简化的方法呢?

@Chain-Mao
Copy link
Author

image

@TNTWEN
Copy link
Owner

TNTWEN commented Jul 3, 2022

@maomao279
对,Parsing YOLO Region output是将神经网络的输出进行后处理,得到最终的检测框。 这个是挺难优化的。耗时的主要是NMS非极大值抑制,你可以看看有没有效率更高的NMS算法 。 另外C++的推理会比python快些。

@Chain-Mao
Copy link
Author

@maomao279 对,Parsing YOLO Region output是将神经网络的输出进行后处理,得到最终的检测框。 这个是挺难优化的。耗时的主要是NMS非极大值抑制,你可以看看有没有效率更高的NMS算法 。 另外C++的推理会比python快些。

作者大哥,这个Parsing YOLO Region output貌似不包含NMS,是对图像划分为13×13个网格进行分析,单纯是循环次数太多13×13×3导致我耗时过大。在电脑CPU上处理还好,在嵌入式上就很慢了。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants