-
Notifications
You must be signed in to change notification settings - Fork 1
/
ChaProEV.toml
264 lines (232 loc) · 8.45 KB
/
ChaProEV.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
[variants]
use_variants = false
csv_version = true
use_years_in_profiles = true
[parallel_processing]
set_amount_of_processes = false
amount_for_scenarios = 4
amount_for_pickle_saves = 4
[interim_files]
pickle = true
consumption_tables_frequencies = ['hourly', 'daily', 'weekly', 'monthly', 'yearly']
save_consumption_table = [false, false, true, false, false]
[profile_dataframe]
headers = [
'Reference charge drawn from network (kWh)',
'Connected Battery space (kWh)',
'Connected State of charge (kWh)',
'Connected Battery capacity (kWh)',
'Demand for next leg (kWh) (from network)',
'Demand for next leg (kWh) (to vehicle)',
'Connected vehicles (%)',
'Charging Power from Network (kW)',
'Charging Power to Vehicles (kW)',
'Vehicle Discharge Power (kW)',
'Discharge Power to Network (kW)',
]
fleet_headers = [
'Reference charge drawn from network (MWh)',
'Connected Battery space (kWh)',
'Connected State of charge (kWh)',
'Connected Battery capacity (kWh)',
'Demand for next leg (MWh) (from network)',
'Demand for next leg (MWh) (to vehicle)',
'Connected vehicles (thousands)',
'Charging Power from Network (MW)',
'Charging Power to Vehicles (MW)',
'Vehicle Discharge Power (MW)',
'Discharge Power to Network (MW)',
]
do_fleet_tables = true
fleet_file_name = 'fleets.csv'
[sessions_dataframe]
properties = [
'location', 'start_time', 'end_time',
'previous_leg_consumption', 'next_leg_consumption',
'connectivity',
'power_to_vehicle','power_from_network',
'power_from_vehicle', 'power_to_network'
]
dataframe_headers = [
'Location', 'Start time from day start (hours)', 'End time from day start (hours)',
'Demand for incoming leg (kWh) (to vehicle)', 'Demand for next leg (kWh) (to vehicle)',
'Connectivity (%)',
'Charging Power to Vehicles (kW)', 'Charging Power from Network (kW)',
'Vehicle Discharge Power (kW)', 'Discharge Power to Network (kW)',
]
run_dataframe_headers = [
'Location', 'Start time', 'End time',
'Demand for incoming leg (kWh) (to vehicle)', 'Demand for next leg (kWh) (to vehicle)',
'Connectivity (%)',
'Charging Power to Vehicles (kW)', 'Charging Power from Network (kW)',
'Vehicle Discharge Power (kW)', 'Discharge Power to Network (kW)',
]
display_dataframe_headers = [
'Location', 'Start time', 'End time',
'Demand for incoming leg (kWh) (to vehicle)', 'Demand for next leg (kWh) (to vehicle)',
'Connectivity (%)',
'Charging Power to Vehicles (kW)', 'Charging Power from Network (kW)',
'Vehicle Discharge Power (kW)', 'Discharge Power to Network (kW)',
'Maximal Possible Charge to Vehicles (kWh)',
'Charge to Vehicles (kWh)', 'Charge from Network (kWh)'
]
display_dataframe_index = [
'Location', 'Start time', 'End time'
]
fleet_display_dataframe_headers = [
'Previous leg consumption (MWh)', 'Next leg consumption (MWh)',
'Connectivity (thousands)',
'Charging Power to Vehicles (MW)', 'Charging Power from Network (MW)',
'Vehicle Discharge Power (MW)', 'Discharge Power to Network (MW)',
'Maximal Possible Charge to Vehicles (MWh)',
'Charge to Vehicles (MWh)', 'Charge from Network (MWh)'
]
# Parameters for plots (colors, sizes, etc.)
[plots]
[plots.vehicle_temperature_efficiency]
style = 'fivethirtyeight'
source_data_folder = 'input'
source_data_file = 'vehicle_temperature_efficiencies.pkl'
fit_color = 'kraken_ice_blue'
fit_line_size = 1
geotab_data_color = 'kraken_deep_sea_blue'
geotab_data_size = 8
title_size = 14
# File-related parameters
[files]
# General parameters
input_root = 'input'
output_root = 'output'
# For files that group data (such as (sqlite) databases or Excel workbooks)
groupfile_root = 'ChaProEV'
[files.figures]
# Parameters for plots/figures
dpi = 240
# Indicate below if you want to save your (Matplotlib) figures
# In the given formats, and the dpi you want to use (common for all)
[files.figures.outputs]
png = true
pdf = true
svg = true
eps = true
# Indicate below if you want to save your Pandas DataFrames in the
# listed formats (put a true if you want to do so, false if you don't)
[files.dataframe_outputs]
csv = true
json = false
html = false
latex = false
xml = false
clipboard = false # This saves the file to the local clipboard
excel = false
hdf = false
feather = false
parquet = false
stata = false
pickle = true
sql = true
[maps]
map_data_folder = 'input/map_data'
area_data_file_name = 'NUTS_RG_01M_2021_3857_LEVL_3.json'
general_exclusion_codes = [
'ES703', 'ES704', 'ES705', 'ES706', 'ES707', 'ES708', 'ES709',
'PT200', 'PT300',
'FRY10', 'FRY20', 'FRY30', 'FRY40', 'FRY50',
'NO0B1', 'NO0B2'
]
border_data_file_prefix = 'NUTS_BN_01M_2021_3857_LEVL_'
border_data_file_suffix = '.json'
points_data_file_prefix = 'NUTS_LB_2021_3857_LEVL_'
points_data_file_suffix = '.json'
country_code_header = 'Map country'
country_code_header_in_map_data = 'CNTR_CODE'
heat_bar_map = 'Mopo_to_dark'
# Defining custom colors with the RGB values
[colors]
kraken_deep_sea_blue = [0, 22, 40]
kraken_ice_blue = [153, 217, 217]
kraken_boundless_blue = [53, 84, 100]
kraken_shadow_blue = [104, 162, 185]
kraken_red_alert = [233, 7, 43]
Mopo_darkest = [10, 10, 70]
Mopo_dark = [9, 9, 124]
Mopo_light = [0, 88, 143]
Mopo_lightest = [102, 177, 206]
SFC_grenat = [133, 20, 43]
GSHC_grenat = [109, 30, 48]
GSHC_gold = [255, 211, 0]
TNO_white = [255, 255, 255]
TNO_ink = [0, 3, 10]
TNO_dark_blue = [0, 36, 132]
TNO_blue = [18, 62, 183]
TNO_gray = [240, 243, 250]
TNO_action_blue = [51, 105, 255]
TNO_action_orange = [245, 113, 24]
TNO_sustainable_green = [46, 163, 57]
TNO_digital_blue = [102, 190, 204]
TNO_safe_purple = [141, 112, 204]
TNO_healthy_yellow = [245, 200, 20]
TNO_light_orange = [255, 169, 112]
# Defining color bars with lists of colors they use
[color_bars]
kraken = [
'kraken_deep_sea_blue', 'kraken_boundless_blue',
'kraken_shadow_blue', 'kraken_ice_blue']
Mopo_to_light = ['Mopo_darkest', 'Mopo_dark', 'Mopo_light', 'Mopo_lightest']
Mopo_to_dark = ['Mopo_lightest', 'Mopo_light', 'Mopo_dark', 'Mopo_darkest']
[unit_conversions]
JOULES_IN_A_KWH = 3.6e6
# time-related parameters/constants
[time]
SECONDS_PER_HOUR = 3600
HOURS_IN_A_DAY = 24
MONTHS_IN_A_YEAR = 12
MAX_DAYS_IN_A_MONTH = 31
DAYS_IN_A_YEAR = 365.25
DAYS_IN_A_WEEK = 7
weekend_day_numbers = [6, 7]
first_hour_number = 1
# Put 0 if you start counting at 0, 1 if you start counting at 1
# The SPINE toolbox uses 1
# This is only for the hour number list (and related lists)
[numbers]
zero_threshold = 1e-12
# Float precision can mean that we have exteremly small values
# that are actually zero
[consumption]
energy_carriers = ['electricity', 'gasoline', 'diesel', 'hydrogen']
consumption_table_name = 'weekly_consumption_table'
time_header = 'Week number'
distance_header = 'Kilometers'
fleet_distance_header = 'Thousand Kilometers'
energy_carriers_consumption_names = ['electricity consumption kWh', 'gasoline consumption litres', 'diesel consumption litres', 'hydrogen consumption kg']
fleet_energy_carriers_consumption_names = ['electricity consumption MWh', 'gasoline consumption thousand litres', 'diesel consumption thousand litres', 'hydrogen consumption tonnes']
[home_type]
do_car_home_type_split = false
percentages_file = 'car_own_driveway_percentage.csv'
index_name = 'Variant name'
own_driveway_name = 'own_driveway'
on_street_name = 'street_parking'
profiles_index = ['Time Tag', 'Hour Number', 'SPINE_hour_number', 'Day Type', 'Hour index from day start']
sessions_index = ['Location', 'Start time', 'End time']
sessions_values_columns = [
'Demand for incoming leg (kWh) (to vehicle)', 'Demand for next leg (kWh) (to vehicle)',
'Connectivity (%)',
'Charging Power to Vehicles (kW)', 'Charging Power from Network (kW)',
'Vehicle Discharge Power (kW)', 'Discharge Power to Network (kW)',
'Maximal Possible Charge to Vehicles (kWh)',
'Charge to Vehicles (kWh)', 'Charge from Network (kWh)'
]
[sessions]
produce = false
generate_profiles = false
[standard_profiles]
produce = true
[progress_bars]
display_scenario_run = true
scenario_run_description = 'Scenarios started'
display_saving_pool_run = true
saving_pool_run_description = 'Saving extra end outputs started'
[discharge]
no_discharge_efficiency_output = 'No discharge'
no_charge_efficiency_output = 'No charge'