-
Notifications
You must be signed in to change notification settings - Fork 890
/
parallel_inference_xdit.py
109 lines (89 loc) · 3.72 KB
/
parallel_inference_xdit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
"""
This is a parallel inference script for CogVideo. The original script
can be found from the xDiT project at
https://github.com/xdit-project/xDiT/blob/main/examples/cogvideox_example.py
By using this code, the inference process is parallelized on multiple GPUs,
and thus speeded up.
Usage:
1. pip install xfuser
2. mkdir results
3. run the following command to generate video
torchrun --nproc_per_node=4 parallel_inference_xdit.py \
--model <cogvideox-model-path> --ulysses_degree 1 --ring_degree 2 \
--use_cfg_parallel --height 480 --width 720 --num_frames 9 \
--prompt 'A small dog.'
You can also use the run.sh file in the same folder to automate running this
code for batch generation of videos, by running:
sh ./run.sh
"""
import time
import torch
import torch.distributed
from diffusers import AutoencoderKLTemporalDecoder
from xfuser import xFuserCogVideoXPipeline, xFuserArgs
from xfuser.config import FlexibleArgumentParser
from xfuser.core.distributed import (
get_world_group,
get_data_parallel_rank,
get_data_parallel_world_size,
get_runtime_state,
is_dp_last_group,
)
from diffusers.utils import export_to_video
def main():
parser = FlexibleArgumentParser(description="xFuser Arguments")
args = xFuserArgs.add_cli_args(parser).parse_args()
engine_args = xFuserArgs.from_cli_args(args)
# Check if ulysses_degree is valid
num_heads = 30
if engine_args.ulysses_degree > 0 and num_heads % engine_args.ulysses_degree != 0:
raise ValueError(
f"ulysses_degree ({engine_args.ulysses_degree}) must be a divisor of the number of heads ({num_heads})"
)
engine_config, input_config = engine_args.create_config()
local_rank = get_world_group().local_rank
pipe = xFuserCogVideoXPipeline.from_pretrained(
pretrained_model_name_or_path=engine_config.model_config.model,
engine_config=engine_config,
torch_dtype=torch.bfloat16,
)
if args.enable_sequential_cpu_offload:
pipe.enable_model_cpu_offload(gpu_id=local_rank)
else:
device = torch.device(f"cuda:{local_rank}")
pipe = pipe.to(device)
# Always enable tiling and slicing to avoid VAE OOM while batch size > 1
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
torch.cuda.reset_peak_memory_stats()
start_time = time.time()
output = pipe(
height=input_config.height,
width=input_config.width,
num_frames=input_config.num_frames,
prompt=input_config.prompt,
num_inference_steps=input_config.num_inference_steps,
generator=torch.Generator().manual_seed(input_config.seed),
guidance_scale=6,
use_dynamic_cfg=True,
).frames[0]
end_time = time.time()
elapsed_time = end_time - start_time
peak_memory = torch.cuda.max_memory_allocated(device=f"cuda:{local_rank}")
parallel_info = (
f"dp{engine_args.data_parallel_degree}_cfg{engine_config.parallel_config.cfg_degree}_"
f"ulysses{engine_args.ulysses_degree}_ring{engine_args.ring_degree}_"
f"tp{engine_args.tensor_parallel_degree}_"
f"pp{engine_args.pipefusion_parallel_degree}_patch{engine_args.num_pipeline_patch}"
)
if is_dp_last_group():
world_size = get_data_parallel_world_size()
resolution = f"{input_config.width}x{input_config.height}"
output_filename = f"results/cogvideox_{parallel_info}_{resolution}.mp4"
export_to_video(output, output_filename, fps=8)
print(f"output saved to {output_filename}")
if get_world_group().rank == get_world_group().world_size - 1:
print(f"epoch time: {elapsed_time:.2f} sec, memory: {peak_memory/1e9} GB")
get_runtime_state().destory_distributed_env()
if __name__ == "__main__":
main()