-
Notifications
You must be signed in to change notification settings - Fork 0
/
dpanalysis_pat_data.py
216 lines (174 loc) · 9.29 KB
/
dpanalysis_pat_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import FWCore.ParameterSet.Config as cms
process = cms.Process("test")
process.load("FWCore.MessageService.MessageLogger_cfi")
process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32( 1000 ) )
process.source = cms.Source("PoolSource",
# replace 'myfile.root' with the source file you want to use
fileNames = cms.untracked.vstring(
'file:/local/cms/phedex/store/data/Run2012C/SinglePhoton/RECO/EXODisplacedPhoton-PromptSkim-v3/000/200/190/00000/18BB0794-8CDF-E111-B9B0-0025B31E3D3C.root'
#'file:/local/cms/phedex/store/mc/Summer12_DR53X/TTJets_FullLeptMGDecays_8TeV-madgraph/AODSIM/PU_S10_START53_V7A-v1/00000/A82972DB-0F10-E211-825F-001EC9D8A8C8.root'
),
# explicitly drop photons resident in AOD/RECO, to make sure only those locally re-made (uncleaned photons) are used
inputCommands = cms.untracked.vstring('keep *'
#,'drop *_photonCore_*_RECO' # drop hfRecoEcalCandidate as remade in this process
#, 'drop *_photons_*_RECO' # drop photons as remade in this process
)
)
process.options = cms.untracked.PSet(
wantSummary = cms.untracked.bool(True),
SkipEvent = cms.untracked.vstring('ProductNotFound')
)
process.ana = cms.EDAnalyzer('DPAnalysis',
rootFileName = cms.untracked.string('Photon_2012_test1.root'),
#rootFileName = cms.untracked.string('/uscms_data/d2/sckao/Photon_2012B_TrgMatch.root'),
#triggerName = cms.vstring('HLT_IsoMu30_v', 'HLT_DisplacedPhoton65_CaloIdVL_IsoL_PFMET25'),
triggerName = cms.vstring('HLT_Photon50_CaloIdVL_IsoL', 'HLT_DisplacedPhoton65_CaloIdVL_IsoL_PFMET25'),
L1GTSource = cms.string('L1_SingleEG22'),
L1Select = cms.bool( True ),
isData = cms.bool(True),
cscHaloData = cms.InputTag("CSCHaloData"),
staMuons = cms.InputTag("standAloneMuons"),
CSCSegmentCollection = cms.InputTag("cscSegments"),
trigSource = cms.InputTag("TriggerResults","","HLT"),
jetSource = cms.InputTag("ak5PFJets"),
patJetSource = cms.InputTag("selectedPatJetsPFlow"),
#metSource = cms.InputTag("pfMet"),
metSource = cms.InputTag("pfType1CorrectedMet"),
muonSource = cms.InputTag("muons"),
trackSource = cms.InputTag("generalTracks"),
electronSource = cms.InputTag("gsfElectrons"),
photonSource = cms.InputTag("myphotons"),
pvSource = cms.InputTag("offlinePrimaryVerticesWithBS"),
beamSpotSource = cms.InputTag("offlineBeamSpot"),
EBRecHitCollection = cms.InputTag("reducedEcalRecHitsEB"),
EERecHitCollection = cms.InputTag("reducedEcalRecHitsEE"),
tau = cms.double( 1000 ),
genParticles = cms.InputTag("genParticles"),
# Set up cuts for physics objects
# vertex cuts z ndof d0
vtxCuts = cms.vdouble( 99, 0, 99 ),
# photon cuts pt eta sMajMax, sMinMin, sMinMax, trkVeto Num leadingPt
photonCuts = cms.vdouble( 45, 2.4, 999., -1, 99., 0.05, 1 , 60 ),
# photon isolation trk, ecalSumEt, ecalR, hcalSumEt, hcalR
photonIso = cms.vdouble( 0.2, 4.5, 0.1, 4.0, 0.1 ),
# jet cuts pt eta dR, nJets
jetCuts = cms.vdouble( 35. , 2.4, 0.3, 0 ),
metCuts = cms.vdouble( 0. ),
# electron cuts pt eta EBIso EEIso nLostHit
electronCuts = cms.vdouble( 25, 2.4, 0.15, 0.1, 2 ),
# muon cuts pt eta Iso dR
muonCuts = cms.vdouble( 25, 2.1, 0.2, 0.3 ),
)
########### USE UNCLEANED SUPERCLUSTERS #########################
# Global Tag
process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff")
#process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_noesprefer_cff")
#process.GlobalTag.globaltag = 'GR_P_V40::All'
from Configuration.AlCa.GlobalTag import GlobalTag
#process.GlobalTag = GlobalTag( process.GlobalTag, 'auto:com10_7E33v4' )
process.GlobalTag = GlobalTag( process.GlobalTag, 'GR_R_53_V18::All' )
# to get clustering
#process.load("Configuration.StandardSequences.Geometry_cff")
process.load('Configuration.Geometry.GeometryAll_cff')
process.load('Configuration.StandardSequences.GeometryExtended_cff')
# Geometry
process.load("Geometry.CaloEventSetup.CaloTopology_cfi")
process.load("Geometry.CaloEventSetup.CaloGeometry_cff")
process.load("Geometry.CaloEventSetup.CaloGeometry_cfi")
process.load("Geometry.EcalMapping.EcalMapping_cfi")
process.load("Geometry.EcalMapping.EcalMappingRecord_cfi")
process.load("Geometry.MuonNumbering.muonNumberingInitialization_cfi") # gfwork: need this?
process.CaloTowerConstituentsMapBuilder = cms.ESProducer("CaloTowerConstituentsMapBuilder")
process.load("RecoEcal.EgammaClusterProducers.uncleanSCRecovery_cfi")
process.uncleanSCRecovered.cleanScCollection=cms.InputTag ("correctedHybridSuperClusters")
# myPhoton sequence
process.load("RecoEgamma.PhotonIdentification.photonId_cff")
process.load("RecoLocalCalo.EcalRecAlgos.EcalSeverityLevelESProducer_cfi")
#process.ecalSeverityLevel.timeThresh = cms.double(2.0)
import RecoEgamma.EgammaPhotonProducers.photonCore_cfi
import RecoEgamma.EgammaPhotonProducers.photons_cfi
process.myphotonCores=RecoEgamma.EgammaPhotonProducers.photonCore_cfi.photonCore.clone()
process.myphotonCores.scHybridBarrelProducer=cms.InputTag ("uncleanSCRecovered:uncleanHybridSuperClusters")
from RecoEgamma.PhotonIdentification.mipVariable_cfi import *
newMipVariable = mipVariable.clone()
newMipVariable.barrelEcalRecHitCollection = cms.InputTag('reducedEcalRecHitsEB')
newMipVariable.endcapEcalRecHitCollection = cms.InputTag('reducedEcalRecHitsEE')
from RecoEgamma.PhotonIdentification.isolationCalculator_cfi import*
newisolationSumsCalculator = isolationSumsCalculator.clone()
newisolationSumsCalculator.barrelEcalRecHitCollection = cms.InputTag('reducedEcalRecHitsEB')
newisolationSumsCalculator.endcapEcalRecHitCollection = cms.InputTag('reducedEcalRecHitsEE')
process.myphotons=RecoEgamma.EgammaPhotonProducers.photons_cfi.photons.clone()
process.myphotons.barrelEcalHits=cms.InputTag("reducedEcalRecHitsEB")
process.myphotons.endcapEcalHits=cms.InputTag("reducedEcalRecHitsEE")
process.myphotons.isolationSumsCalculatorSet=newisolationSumsCalculator
process.myphotons.mipVariableSet = newMipVariable
process.myphotons.photonCoreProducer=cms.InputTag("myphotonCores")
process.myPhotonSequence = cms.Sequence(process.myphotonCores+
process.myphotons)
# photonID sequence
from RecoEgamma.PhotonIdentification.photonId_cfi import *
process.myPhotonIDSequence = cms.Sequence(PhotonIDProd)
process.PhotonIDProd.photonProducer=cms.string("myphotons")
process.uncleanPhotons = cms.Sequence(
process.uncleanSCRecovered *
process.myPhotonSequence *
process.myPhotonIDSequence
)
# typeI MET correction
process.load("JetMETCorrections.Type1MET.pfMETCorrections_cff")
# pat process
# import skeleton process
#from PhysicsTools.PatAlgos.patTemplate_cfg import *
# conditions
process.load( "Configuration.Geometry.GeometryIdeal_cff" )
process.load( "Configuration.StandardSequences.MagneticField_AutoFromDBCurrent_cff" )
# load the PAT config
process.load("PhysicsTools.PatAlgos.patSequences_cff")
process.patElectrons.addGenMatch = False
process.patJets.addGenPartonMatch = False
process.patJets.addGenJetMatch = False
process.patMETs.addGenMET = False
process.patMuons.addGenMatch = False
process.patPhotons.addGenMatch = False
process.patTaus.addGenMatch = False
process.patTaus.addGenJetMatch = False
process.patJetCorrFactors.levels.append( 'L2L3Residual' )
# this function will modify the PAT sequences.
#removeMCMatchingPF2PAT( process, '' )
process.out = cms.OutputModule("PoolOutputModule"
, fileName = cms.untracked.string( 'patTuple_data.root' )
, outputCommands = cms.untracked.vstring(
'keep *'
# 'keep *_cscSegments_*_*'
# *patEventContentNoCleaning
)
)
# this function will modify the PAT sequences.
from PhysicsTools.PatAlgos.tools.pfTools import *
postfix = "PFlow"
usePF2PAT( process
, runPF2PAT = True
, jetAlgo = 'AK5'
, runOnMC = False
, postfix = postfix
#, jetCorrections=('AK5PFchs', ['L1FastJet','L2Relative','L3Absolute'])
, jetCorrections=('AK5PFchs', ['L2L3Residual'])
)
process.p = cms.Path(
process.uncleanPhotons *
# process.patPF2PATSequence*
getattr(process,"patPF2PATSequence"+postfix) *
process.producePFMETCorrections *
process.ana
)
# top projections in PF2PAT:
getattr(process,"pfNoPileUp"+postfix).enable = True
getattr(process,"pfNoMuon"+postfix).enable = True
getattr(process,"pfNoElectron"+postfix).enable = True
getattr(process,"pfNoTau"+postfix).enable = False
getattr(process,"pfNoJet"+postfix).enable = True
# verbose flags for the PF2PAT modules
getattr(process,"pfNoMuon"+postfix).verbose = False
# enable delta beta correction for muon selection in PF2PAT?
getattr(process,"pfIsolatedMuons"+postfix).doDeltaBetaCorrection = False
process.out.outputCommands.extend( [ 'drop *_*_*_*' ] )