forked from ModelDBRepository/262046
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pGPeA.mod
211 lines (177 loc) · 4.3 KB
/
pGPeA.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
TITLE All ion channels used in GP models
:
: Na+, K, Ca_T, Leakage, AHP and Ca diffusion
:
NEURON {
SUFFIX GPeA
NONSPECIFIC_CURRENT ilk
USEION ca READ cai, cao WRITE ica, cai
USEION k READ ki, ko WRITE ik
USEION na READ nai, nao WRITE ina
RANGE ina, ik, ica
RANGE gnabar, ena, m_inf, h_inf, tau_h, tau_m : fast sodium
RANGE gkdrbar, ek, n_inf, tau_n, ikD : delayed K rectifier
RANGE gl, el, ilk : leak
RANGE gcatbar, eca, p_inf, tau_p, q_inf, tau_q, icaT : T-type ca current
RANGE gkcabar, ek, r_inf, ikAHP : ca dependent AHP K current
RANGE kca, vol, caGain : ca dynamics
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
(molar) = (1/liter)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb) :units are really coulombs/mole
PI = (pi) (1)
}
PARAMETER {
R = 8.31441 (Gas constant)
T (Absolute temp)
celsius (degC)
:Fast Na channel
gnabar = 49e-3 (S/cm2)
theta_m = -38 (mV)
theta_h = -45.5 (mV)
k_m = -7 (mV)
k_h = 6.4 (mV)
tau_m0 = 0.001 (ms)
tau_m1 = 0.1 (ms)
tau_h0 = 0 (ms)
tau_h1 = 4.5 (ms)
tht_m = -53 (mV)
tht_h1 = -50 (mV)
tht_h2 = -50 (mV)
sig_m = -0.7 (mV)
sig_h1 = -15 (mV)
sig_h2 = 16 (mV)
: delayed K rectifier
gkdrbar = 57e-3 (S/cm2)
theta_n = -42 (mV)
k_n = -14 (mV)
tau_n0 = 0 (ms)
tau_n1 = 2.4 (ms)
tht_n1 = -40 (mV)
tht_n2 = -40 (mV)
sig_n1 = -40 (mV)
sig_n2 = 50 (mV)
:Leakage current
gl = 0.35e-3 (S/cm2)
el = -60 (mV)
:Ca dynamics
kca = 2 (1/ms)
area
vol = 3.355e-11 (L) :~20um radius sphere
caGain = .1
:T-type ca current
gcatbar = 5e-3 (S/cm2)
theta_p = -56 (mV)
theta_q = -85 (mV)
k_p = -6.7 (mV)
k_q = 5.8 (mV)
tau_p0 = 5 (ms)
tau_p1 = 0.33 (ms)
tau_q0 = 0 (ms)
tau_q1 = 400 (ms)
tht_p1 = -27 (mV)
tht_p2 = -102 (mV)
tht_q1 = -50 (mV)
tht_q2 = -50 (mV)
sig_p1 = -10 (mV)
sig_p2 = 15 (mV)
sig_q1 = -15 (mV)
sig_q2 = 16 (mV)
:AHP current (Ca dependent K current)
gkcabar = 1e-3 (S/cm2)
theta_r = 0.17e-3 (mM)
k_r = -0.08e-3 (mM)
tau_r = 2 (ms)
power_r = 2
}
ASSIGNED {
v (mV)
ina (mA/cm2)
ik (mA/cm2)
ikD (mA/cm2)
ikAHP (mA/cm2)
ica (mA/cm2)
icaT (mA/cm2)
ilk (mA/cm2)
:Fast Na
h_inf
tau_h (ms)
m_inf
tau_m (ms)
ena (mV) := 60
:K rectifier
n_inf
tau_n (ms)
ek (mV) := -90
:T-type ca current
p_inf
q_inf
tau_p (ms)
tau_q (ms)
eca (mV) :calc from Nernst
:AHP (Ca dependent K current)
r_inf
}
STATE {
m h n
p q
cai (mM) <1e-10>
cao (mM) <1e-10>
nai (mM) <1e-10>
nao (mM) <1e-10>
ki (mM) <1e-10>
ko (mM) <1e-10>
r
}
BREAKPOINT {
SOLVE states METHOD cnexp
T = 273 + celsius - 9.5
ena = -(R*T)/FARADAY*log(nai/nao)*1000
ek = (R*T)/FARADAY*log(ko/ki)*1000
eca = -(R*T)/FARADAY*log(cai/cao)*1000/2
ina = gnabar * m*m*m*h * (v - ena)
ikD = gkdrbar * n^4 * (v - ek)
ikAHP = gkcabar * (v - ek)*r^(power_r)
ik=ikD+ikAHP
ilk = gl * (v - el)
ica = gcatbar * p*p*q * (v - eca)
}
DERIVATIVE states {
evaluate_fct(v)
h' = (h_inf - h)/tau_h
m' = (m_inf - m)/tau_m
n' = (n_inf - n)/tau_n
p' = (p_inf - p)/tau_p
q' = (q_inf - q)/tau_q
:(Ica mA/cm2)*(area um2)*(1e-8 cm2/um2)*(1e-3 A/mA)*(1/(2*F) mol/C)*(1e-3 sec/msec)*(1e3 mMol/mol)(1/volume 1/L)=(mM/msec)
cai' = caGain*(-ica*area*1e-11/(2*FARADAY*vol) - kca*cai)
r' = (r_inf - r)/tau_r
}
UNITSOFF
INITIAL {
evaluate_fct(v)
m = m_inf
h = h_inf
n = n_inf
p = p_inf
q = q_inf
r = r_inf
}
PROCEDURE evaluate_fct(v(mV)) {
h_inf = 1/(1+exp((v-theta_h)/k_h))
m_inf = 1/(1+exp((v-theta_m)/k_m))
tau_h = tau_h0 + tau_h1/(exp(-(v-tht_h1)/sig_h1) + exp(-(v-tht_h2)/sig_h2))
tau_m = tau_m0 + tau_m1/(1+exp(-(v-tht_m)/sig_m))
n_inf = 1/(1+exp((v-theta_n)/k_n))
tau_n = tau_n0 + tau_n1/(exp(-(v-tht_n1)/sig_n1) + exp(-(v-tht_n2)/sig_n2))
p_inf = 1/(1+exp((v-theta_p)/k_p))
q_inf = 1/(1+exp((v-theta_q)/k_q))
tau_p = tau_p0 + tau_p1/(exp(-(v-tht_p1)/sig_p1) + exp(-(v-tht_p2)/sig_p2))
tau_q = tau_q0 + tau_q1/(exp(-(v-tht_q1)/sig_q1) + exp(-(v-tht_q2)/sig_q2))
r_inf = 1/(1+exp((cai-theta_r)/k_r))
}
UNITSON