Skip to content

Latest commit

 

History

History
172 lines (125 loc) · 5.96 KB

get_started.md

File metadata and controls

172 lines (125 loc) · 5.96 KB

Prerequisites

  • Linux | macOS | Windows
  • Python 3.6+
  • PyTorch 1.6+
  • CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
  • GCC 5+
  • MMCV
  • MMEngine
  • MMDetection
  • MMTracking

The compatible MMTracking, MMEngine, MMCV, and MMDetection versions are as below. Please install the correct version to avoid installation issues.

MMTracking version MMEngine version MMCV version MMDetection version
1.x mmengine>=0.1.0 mmcv>=2.0.0rc1,<2.0.0 mmdet>=3.0.0rc0,<3.0.0
1.0.0rc1 mmengine>=0.1.0 mmcv>=2.0.0rc1,<2.0.0 mmdet>=3.0.0rc0,<3.0.0

Installation

Detailed Instructions

  1. Create a conda virtual environment and activate it.

    conda create -n shift-tta python=3.9 -y
    conda activate shift-tta
  2. Install PyTorch and torchvision following the official instructions. Here we use PyTorch 1.10.0 and CUDA 11.1. You may also switch to other version by specifying the version number.

    Install with conda

    conda install pytorch=1.11.0 torchvision cudatoolkit=11.3 -c pytorch

    Install with pip

    pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113
  3. Install MMEngine

    pip install mmengine
  4. Install mmcv, we recommend you to install the pre-build package as below.

    pip install 'mmcv>=2.0.0rc1' -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html

    mmcv is only compiled on PyTorch 1.x.0 because the compatibility usually holds between 1.x.0 and 1.x.1. If your PyTorch version is 1.x.1, you can install mmcv compiled with PyTorch 1.x.0 and it usually works well.

    # We can ignore the micro version of PyTorch
    pip install 'mmcv>=2.0.0rc1' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.11.0/index.html

    See here for different versions of MMCV compatible to different PyTorch and CUDA versions. Optionally you can choose to compile mmcv from source by the following command

    git clone -b 2.x https://github.com/open-mmlab/mmcv.git
    cd mmcv
    MMCV_WITH_OPS=1 pip install -e .  # package mmcv, which contains cuda ops, will be installed after this step
    # pip install -e .  # package mmcv, which contains no cuda ops, will be installed after this step
    cd ..

    Important: You need to run pip uninstall mmcv-lite first if you have mmcv installed. Because if mmcv-lite and mmcv are both installed, there will be ModuleNotFoundError.

  5. Install MMDetection

    pip install 'mmdet>=3.0.0rc0'

    Optionally, you can also build MMDetection from source in case you want to modify the code:

    git clone -b 3.x https://github.com/open-mmlab/mmdetection.git
    cd mmdetection
    pip install -r requirements/build.txt
    pip install -v -e .  # or "python setup.py develop"
  6. Install MMTracking

    pip install 'mmtrack>=1.0.0rc1'

    Optionally, you can also build MMTracking from source in case you want to modify the code:

    git clone -b 1.x https://github.com/open-mmlab/mmtracking.git
    cd mmtracking
    pip install -r requirements/build.txt
    pip install -v -e .  # or "python setup.py develop"
  7. Clone the shift-detection-tta repository.

    git clone [email protected]:SysCV/shift-detection-tta.git
    cd shift-detection-tta
  8. Install build requirements and then install shift-detection-tta.

    pip install -r requirements/build.txt
    pip install -v -e .  # or "python setup.py develop"

Note:

a. Following the above instructions, shift-detection-tta is installed on dev mode , any local modifications made to the code will take effect without the need to reinstall it.

b. If you would like to use opencv-python-headless instead of opencv-python, you can install it before installing MMCV.

A from-scratch setup script

Assuming that you already have CUDA 10.1 installed, here is a full script for setting up shift-detection-tta with conda.

conda create -n shift-tta python=3.9 -y
conda activate shift-tta

conda install pytorch=1.11.0 torchvision cudatoolkit=11.3 -c pytorch -y

pip install -U openmim
# install mmengine from main branch
python -m pip install git+https://github.com/open-mmlab/mmengine.git@62f9504d701251db763f56658436fd23a586fe25
# install mmcv
mim install 'mmcv == 2.0.0rc4'
# install mmdetection
mim install 'mmdet == 3.0.0rc5'
# install mmclassification from dev-1.x branch at specific commit
python -m pip install git+https://github.com/open-mmlab/mmclassification.git@3ff80f5047fe3f3780a05d387f913dd02999611d
# install mmtracking from dev-1.x branch at specific commit
python -m pip install git+https://github.com/open-mmlab/mmtracking.git@9e4cb98a3cdac749242cd8decb3a172058d4fd6e

# install trackeval for compatibility with mmtrack
python -m pip install git+https://github.com/JonathonLuiten/TrackEval.git  
# install scalabel
python -m pip install git+https://github.com/scalabel/scalabel.git

# install shift-detection-tta
git clone [email protected]:SysCV/shift-detection-tta.git
cd shift-detection-tta
python -m pip install --no-input -r requirements.txt
pip install --no-input -v -e .

Alternatively (and recommended), clone the repository and directly run the install script setup_env.sh:

git clone [email protected]:SysCV/shift-detection-tta.git
cd shift-detection-tta
./tools/install/setup_env.sh