forked from prajdabre/yanmtt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon_utils.py
1381 lines (1263 loc) · 88.8 KB
/
common_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# Copyright 2021 National Institute of Information and Communication Technology (Raj Dabre)
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the
# Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute,
# sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
# The above copyright notice and this permission notice shall
# be included in all copies or substantial portions of the
# Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
# KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
# PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
# OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
## Basic imports
import os
import argparse
import time
import sys
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
##
## Huggingface imports
import transformers
from transformers import AutoTokenizer, MBartTokenizer, MBart50Tokenizer, BartTokenizer
from transformers import MBartForConditionalGeneration, MBartConfig, get_linear_schedule_with_warmup
from transformers import AdamW
##
## Pytorch imports
import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.optim import Adam
##
## Our imports
from common_utils import *
##
## Other imports
import random
import numpy as np
import math
import sacrebleu
from rouge_score import rouge_scorer
import functools
import matplotlib.pyplot as plt # drawing heat map of attention weights
from matplotlib import rcParams
import matplotlib.colors as mcolors
rcParams['font.sans-serif'] = ['Source Han Sans TW',
'sans-serif',
"FreeSerif" # fc-list :lang=hi family
]
##
## Seed setting here
torch.manual_seed(621311)
##
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=None):
"""From fairseq. This returns the label smoothed cross entropy loss."""
if target.dim() == lprobs.dim() - 1:
target = target.unsqueeze(-1)
nll_loss = -lprobs.gather(dim=-1, index=target)
smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
if ignore_index is not None:
pad_mask = target.eq(ignore_index)
nll_loss.masked_fill_(pad_mask, 0.0)
smooth_loss.masked_fill_(pad_mask, 0.0)
denominator = (1.0 - 1.0*pad_mask)
denominator = denominator.sum()
else:
nll_loss = nll_loss.squeeze(-1)
smooth_loss = smooth_loss.squeeze(-1)
denominator = 1.0
if ignore_index is not None:
nll_loss = nll_loss.sum()
smooth_loss = smooth_loss.sum()
else:
nll_loss = nll_loss.mean()
smooth_loss = smooth_loss.mean()
eps_i = epsilon / lprobs.size(-1)
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
loss = loss/denominator
return loss
def lmap(f, x):
"""list(map(f, x)). Converts a map into a list containing (key,value) pairs."""
return list(map(f, x))
def compute_distillation_losses(child_mod_compute, parent_mod_compute, target, ignore_index, args):
"""Implemented by me. This is based on distill bert, distill mbart etc. This method is run when the 'distillation' argument is passed.
There are 3 types of distillation losses for now: cross_entropy, hidden_layer_regression and attention_distillation.
cross_entropy: This minimizes the cross entropy loss between the parent distribution and the child distribution. Essentially this is different from regular cross entropy loss in the following way. Regular cross entropy is -(label(Y)*log(p_child(Y/X))) whereas this distillation loss is -(p_parent(Y/X)*log(p_child(Y/X))). We expect that the child will mimic the parent distribution.
hidden_layer_regression: Here we choose parent to child layer mappings and minimize the hidden layer differences via the L2 (regression) loss. Simply put, for the encoder and decoder, for each layer mapping, we compute (child_hidden_representation-parent_hidden_representation)**2.
attention_distillation: This is a rather recent approach where we compute cross entropy loss between the attention distributions of the parent (as a label) and the child. The loss is -(parent_layer_x_attention*log(child_layer_x_attention))."""
distillation_losses_to_compute = args.distillation_styles.split(",")
all_distillation_losses = []
if target.dim() == child_mod_compute.logits.dim() - 1:
target = target.unsqueeze(-1)
pad_mask = target.eq(ignore_index)
for distillation_loss_to_compute in distillation_losses_to_compute:
if distillation_loss_to_compute == "cross_entropy":
parent_logits = parent_mod_compute.logits
parent_lprobs = torch.nn.functional.log_softmax(parent_logits/args.distillation_temperature, dim=-1)
child_logits = child_mod_compute.logits
child_lprobs = torch.nn.functional.log_softmax(child_logits/args.distillation_temperature, dim=-1)
parent_softmax = torch.exp(parent_lprobs)
distillation_cross_entropy = parent_softmax*child_lprobs
distillation_cross_entropy.masked_fill_(pad_mask, 0.0)
distillation_cross_entropy = distillation_cross_entropy.sum(dim=-1)
distillation_cross_entropy = distillation_cross_entropy.mean() * args.distillation_temperature**2
all_distillation_losses.append(distillation_cross_entropy)
if distillation_loss_to_compute == "hidden_layer_regression":
all_regression_losses = []
for layer_mapping in args.distillation_layer_mapping.strip().split(","):
parent_layer_idx, child_layer_idx = layer_mapping.split("-")
parent_layer_idx, child_layer_idx = int(parent_layer_idx)-1, int(child_layer_idx)-1
parent_encoder_layer_state = parent_mod_compute.encoder_hidden_states[parent_layer_idx]
child_encoder_layer_state = child_mod_compute.encoder_hidden_states[child_layer_idx]
encoder_l2_loss = (parent_encoder_layer_state-child_encoder_layer_state)**2
encoder_l2_loss.masked_fill_(pad_mask, 0.0)
encoder_l2_loss = encoder_l2_loss.sum(dim=-1).mean()
parent_decoder_layer_state = parent_mod_compute.decoder_hidden_states[parent_layer_idx]
child_decoder_layer_state = child_mod_compute.decoder_hidden_states[child_layer_idx]
decoder_l2_loss = (parent_decoder_layer_state-child_decoder_layer_state)**2
decoder_l2_loss.masked_fill_(pad_mask, 0.0)
decoder_l2_loss = decoder_l2_loss.sum(dim=-1).mean()
all_regression_losses.append(encoder_l2_loss)
all_regression_losses.append(decoder_l2_loss)
regression_loss = torch.mean(torch.stack(all_regression_losses), dim=0)
all_distillation_losses.append(-regression_loss) ## We will take a negative later so this minus sign here is to negate its effect. We want to minimize the L2 loss after all.
if distillation_loss_to_compute == "attention_distillation":
all_attention_distillation_losses = []
for layer_mapping in args.distillation_layer_mapping.strip().split(","):
parent_layer_idx, child_layer_idx = layer_mapping.split("-")
parent_layer_idx, child_layer_idx = int(parent_layer_idx)-1, int(child_layer_idx)-1
parent_encoder_self_attention = parent_mod_compute.encoder_attentions[parent_layer_idx]
child_encoder_self_attention = child_mod_compute.encoder_attentions[child_layer_idx]
# deal with padding here. We will need to access the source token padding information.
encoder_sa_loss = parent_encoder_attention*torch.log(child_encoder_attention.masked_fill_(child_encoder_attention.eq(0.0), 1e-10))
encoder_l2_loss = encoder_l2_loss.sum(dim=-1).mean()
parent_decoder_self_attention = parent_mod_compute.decoder_attentions[parent_layer_idx]
child_decoder_self_attention = child_mod_compute.decoder_attentions[child_layer_idx]
decoder_sa_loss = parent_decoder_self_attention*torch.log(child_decoder_self_attention.masked_fill_(child_decoder_self_attention.eq(0.0), 1e-10))
decoder_sa_loss = decoder_sa_loss.sum(dim=-1).mean()
parent_decoder_cross_attention = parent_mod_compute.cross_attentions[parent_layer_idx]
child_decoder_cross_attention = child_mod_compute.cross_attentions[child_layer_idx]
decoder_ca_loss = parent_decoder_cross_attention*torch.log(child_decoder_cross_attention.masked_fill_(child_decoder_cross_attention.eq(0.0), 1e-10))
decoder_ca_loss = decoder_ca_loss.sum(dim=-1).mean()
all_attention_distillation_losses.append(encoder_sa_loss)
all_attention_distillation_losses.append(decoder_sa_loss)
all_attention_distillation_losses.append(decoder_ca_loss)
all_attention_distillation_losses = torch.mean(torch.stack(all_attention_distillation_losses), dim=0)
all_distillation_losses.append(all_attention_distillation_losses)
return -torch.mean(torch.stack(all_distillation_losses), dim=0)
def remap_layers(model, idx, args): ### Cut this code into half.
"""This method is used to remap the layers from a pretrained model to the current model. The remapping info comes in the form of 2-1,... which means, map the second layer of the pretrained model to the first layer of the current model."""
print("Remapping layers from parent to child.")
model_copy = model.copy()
if args.remap_encoder != "":
keys_to_consider = [key for key in model.keys() if ".encoder.layers" in key]
keys_to_keep = set() ## Keys to keep in the model dict once remapping is done as we assume that the user always specifies ALL desired target model keys to be remapped.
for mapping in args.remap_encoder.split(","):
slayer, tlayer = mapping.split("-")
slayer = str(int(slayer)-1) # Zero indexing
tlayer = str(int(tlayer)-1) # Zero indexing
keys_to_keep.add(slayer) ## Key remapped so it should not be deleted
for key in keys_to_consider:
key = key.strip().split(".")
key_copy = list(key)
if key[idx] == slayer:
print("Remapping", key)
key_copy[idx] =tlayer
key = ".".join(key)
key_copy = ".".join(key_copy)
model[key] = model_copy[key_copy]
for key in keys_to_consider: ## Purge all unspecified keys.
key = key.strip().split(".")
if key[idx] not in keys_to_keep:
key = ".".join(key)
print("Deleting", key)
del model[key]
if args.remap_decoder != "":
keys_to_consider = [key for key in model.keys() if ".decoder.layers" in key]
keys_to_keep = set() ## Keys to keep in the model dict once remapping is done as we assume that the user always specifies ALL desired target model keys to be remapped.
for mapping in args.remap_encoder.split(","):
slayer, tlayer = mapping.split("-")
slayer = str(int(slayer)-1) # Zero indexing
tlayer = str(int(tlayer)-1) # Zero indexing
keys_to_keep.add(slayer) ## Key remapped so it should not be deleted
for key in keys_to_consider:
key = key.strip().split(".")
key_copy = list(key)
if key[idx] == slayer:
print("Remapping", key)
key_copy[idx] =tlayer
key = ".".join(key)
key_copy = ".".join(key_copy)
model[key] = model_copy[key_copy]
for key in keys_to_consider: ## Purge all unspecified keys.
key = key.strip().split(".")
if key[idx] not in keys_to_keep:
key = ".".join(key)
print("Deleting", key)
del model[key]
print("Final model dictionary after remapping is:", model.keys())
return model
def remap_embeddings(our_model_dict, model_to_load_dict, args):
"""This method will consider two tokenizers, one for the pretrained model and one for the current model. It will then remap the embeddings. When we remapt embeddings we not only remap input embeddings to the encoder and decoder but also the lm head parameters which is a kind of embedding consisting of a weight matrix and biases. Note that embed positions remapping makes no sense."""
if args.pretrained_tokenizer_name_or_path is None:
return model_to_load_dict
tok = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path, do_lower_case=False, use_fast=False, keep_accents=True).get_vocab()
tok_pre = AutoTokenizer.from_pretrained(args.pretrained_tokenizer_name_or_path, do_lower_case=False, use_fast=False, keep_accents=True).get_vocab()
for token in tok:
tok_idx = tok[token]
if token in tok_pre:
pre_tok_idx = tok_pre[token]
our_model_dict["module.model.shared.weight"][tok_idx] = model_to_load_dict["module.model.shared.weight"][pre_tok_idx]
our_model_dict["module.model.encoder.embed_tokens.weight"][tok_idx] = model_to_load_dict["module.model.encoder.embed_tokens.weight"][pre_tok_idx]
our_model_dict["module.model.decoder.embed_tokens.weight"][tok_idx] = model_to_load_dict["module.model.decoder.embed_tokens.weight"][pre_tok_idx]
our_model_dict["module.lm_head.weight"][tok_idx] = model_to_load_dict["module.lm_head.weight"][pre_tok_idx]
our_model_dict["module.final_logits_bias"][tok_idx] = model_to_load_dict["module.final_logits_bias"][pre_tok_idx]
model_to_load_dict["module.model.shared.weight"] = our_model_dict["module.model.shared.weight"]
model_to_load_dict["module.model.encoder.embed_tokens.weight"] = our_model_dict["module.model.encoder.embed_tokens.weight"]
model_to_load_dict["module.model.decoder.embed_tokens.weight"] = our_model_dict["module.model.decoder.embed_tokens.weight"]
model_to_load_dict["module.lm_head.weight"] = our_model_dict["module.lm_head.weight"]
model_to_load_dict["module.final_logits_bias"] = our_model_dict["module.final_logits_bias"]
return model_to_load_dict
def remap_embeddings_eliminate_components_and_eliminate_mismatches(our_model_dict, model_to_load_dict, args):
"""This method first remaps embeddings from pretrained to current model and then eliminates mismatched layers between the pretrained model and the current model. A mismatch is when the size of the pretrained parameter is not the same as the parameter of the current model."""
print("Remapping embeddings.")
model_to_load_dict = remap_embeddings(our_model_dict, model_to_load_dict, args)
if args.eliminate_encoder_before_initialization:
print("Eliminating encoder from the model to load")
for load_model_key in model_to_load_dict:
if "encoder" in load_model_key:
del model_to_load_dict[load_model_key]
if args.eliminate_decoder_before_initialization:
print("Eliminating decoder from the model to load")
for load_model_key in model_to_load_dict:
if "decoder" in load_model_key:
del model_to_load_dict[load_model_key]
if args.eliminate_embeddings_before_initialization:
print("Eliminating embeddings from the model to load")
for load_model_key in model_to_load_dict:
if "embed" in load_model_key:
del model_to_load_dict[load_model_key]
print("Eliminating matched params with mismatched sizes from the initial model.")
for our_model_key in our_model_dict:
if our_model_key in model_to_load_dict:
if our_model_dict[our_model_key].size() != model_to_load_dict[our_model_key].size():
print("Eliminating", our_model_key)
del model_to_load_dict[our_model_key]
return model_to_load_dict
def init_weights(module, in_features, out_features):
"""Method to initialize model weights. Not used for now but might be used in the future. Tries to mimic t2t initialization.
TODO: Incorporate this into the flow so as to give users an option to do their own initialization."""
if isinstance(module, nn.Linear):
init_std = (3.0/(in_features+out_features))**(0.5)
module.weight.data.normal_(mean=0.0, std=init_std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
init_std = (3.0/(out_features))**(0.5)
module.weight.data.normal_(mean=0.0, std=init_std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def shard_files_mono(files, args):
"""This method shards files into N parts containing the same number of lines. Each shard will go to a different GPU which may even be located on another machine. This method is run when the 'shard_files' argument is passed."""
print("Sharding files into", args.world_size, "parts")
for lang in files:
infile = open(files[lang][0]).readlines() if args.num_domains_for_domain_classifier > 1 else open(files[lang]).readlines()
num_lines = len(infile)
lines_per_shard = math.ceil(num_lines/args.world_size)
print("For language:",lang," the total number of lines are:", num_lines, "and number of lines per shard are:", lines_per_shard)
for shard_id in range(args.world_size):
outfile = open(files[lang][0]+"."+"%02d" % shard_id, "w") if args.num_domains_for_domain_classifier > 1 else open(files[lang]+"."+"%02d" % shard_id, "w")
for line in infile[shard_id*lines_per_shard:(shard_id+1)*lines_per_shard]:
outfile.write(line)
outfile.flush()
outfile.close()
print("File for language", lang, "has been sharded.")
sys.stdout.flush()
def shard_files_mono_lm(files, args):
"""This method shards files into N parts containing the same number of lines. Each shard will go to a different GPU which may even be located on another machine. This method is run when the 'shard_files' argument is passed."""
print("Sharding files into", args.world_size, "parts")
for lang in files:
infile = open(files[lang]).readlines()
num_lines = len(infile)
lines_per_shard = math.ceil(num_lines/args.world_size)
print("For language:",lang," the total number of lines are:", num_lines, "and number of lines per shard are:", lines_per_shard)
for shard_id in range(args.world_size):
outfile = open(files[lang]+"."+"%02d" % shard_id, "w")
for line in infile[shard_id*lines_per_shard:(shard_id+1)*lines_per_shard]:
outfile.write(line)
outfile.flush()
outfile.close()
print("File for language", lang, "has been sharded.")
sys.stdout.flush()
def shard_files_bi(files, args):
"""This method shards files into N parts containing the same number of lines. Each shard will go to a different GPU which may even be located on another machine. This method is run when the 'shard_files' argument is passed."""
print("Sharding files into", args.world_size, "parts")
for pair in files:
infile = list(zip(open(files[pair][0]).readlines(), open(files[pair][1]).readlines()))
num_lines = len(infile)
lines_per_shard = math.ceil(num_lines/args.world_size)
print("For language pair:",pair," the total number of lines are:", num_lines, "and number of lines per shard are:", lines_per_shard)
for shard_id in range(args.world_size):
srcoutfile = open(files[pair][0]+"."+"%02d" % shard_id, "w")
tgtoutfile = open(files[pair][1]+"."+"%02d" % shard_id, "w")
for src_line, tgt_line in infile[shard_id*lines_per_shard:(shard_id+1)*lines_per_shard]:
srcoutfile.write(src_line)
tgtoutfile.write(tgt_line)
srcoutfile.flush()
srcoutfile.close()
tgtoutfile.flush()
tgtoutfile.close()
print("File for language pair", pair, "has been sharded.")
sys.stdout.flush()
def get_sacrebleu(refs, hyp):
"""Returns sacrebleu score. Sacrebleu is a reliable implementation for computing corpus level BLEU scores."""
bleu = sacrebleu.corpus_bleu(hyp, refs)
return bleu.score
def yield_corpus_indefinitely_mono(corpus, lang):
"""This shuffles the corpus or corpus shard at the beginning of each epoch and returns sentences indefinitely."""
epoch_counter = 0
try:
while True:
print("Shuffling corpus!")
sys.stdout.flush()
random.shuffle(corpus)
for src_line in corpus:
yield src_line
epoch_counter += 1
print("Finished epoch", epoch_counter, "for language:", lang)
except Exception as e:
print(e)
print("Catastrophic data gen failure")
return None
def yield_corpus_indefinitely_bi(corpus, language):
"""This shuffles the corpus at the beginning of each epoch and returns sentences indefinitely."""
epoch_counter = 0
while True:
print("Shuffling corpus:", language)
random.shuffle(corpus)
for src_line, tgt_line in corpus:
yield src_line, tgt_line
epoch_counter += 1
print("Finished epoch", epoch_counter, "for language:", language)
return None, None ## We should never reach this point.
def sub_sample_and_permute_document(sentence, document_level_sentence_delimiter, max_length):
"""Here we start at a particular random index and select the rest of the sentences. This is to make sure that we dont always see only the initial part of each document all the time."""
sentence_split = sentence.split(" "+document_level_sentence_delimiter+" ")
sentence_split_length = len(sentence_split)
num_delimiters = sentence_split_length - 1
start_idx = random.randint(0, sentence_split_length-1)
sentence_split = sentence_split[start_idx:]
sentence = (" "+document_level_sentence_delimiter+" ").join(sentence_split)
sentence_split = sentence.split(" ")
sent_len = len(sentence_split)
if sent_len > max_length: ## Initial truncation
sentence_split = sentence_split[:max_length]
sentence = " ".join(sentence_split)
sent_len = max_length
sentence_split = sentence.split(" "+document_level_sentence_delimiter+" ")
sentence_split_shuffled = random.sample(sentence_split, len(sentence_split))
sentence_split_shuffled = (" "+document_level_sentence_delimiter+" ").join(sentence_split_shuffled)
sentence_split_shuffled = sentence_split_shuffled.split(" ")
return sentence_split_shuffled, sentence, sent_len
def generate_batches_monolingual_masked(tok, args, files, rank):
"""Generates the source, target and source attention masks for denoising. Long sequences are truncated and short sequences are ignored."""
if args.tokenization_sampling:
print("Stochastic tokenizer will be used.")
if "bart" in args.tokenizer_name_or_path:
print("BPE dropout with a dropout probability of", args.tokenization_alpha_or_dropout, "will be used.")
else:
print("Sentencepiece regularization with an alpha value of", args.tokenization_alpha_or_dropout, "will be used.")
batch_count = 0
if args.use_official_pretrained:
mask_tok = "<mask>"
else:
mask_tok = "[MASK]"
if len(args.token_masking_probs_range) == 1:
mp_val_or_range = args.token_masking_probs_range[0]
elif len(args.token_masking_probs_range) == 2:
mp_val_or_range = args.token_masking_probs_range
print("Masking ratio:", mp_val_or_range)
language_list = list(files.keys())
print("Training for:", language_list)
language_file_dict = {}
probs = {}
for l in language_list:
file_content = open(files[l][0]+"."+"%02d" % rank).readlines() if args.num_domains_for_domain_classifier > 1 else open(files[l]+"."+"%02d" % rank).readlines()
probs[l] = len(file_content)
language_file_dict[l] = yield_corpus_indefinitely_mono(file_content, l)
probs_temp = {lang: probs[lang]/sum(probs.values()) for lang in probs}
probs = probs_temp
probs_temp = {lang: probs[lang]**(1.0/args.data_sampling_temperature) for lang in probs} ## Temperature sampling probabilities.
probs = probs_temp
probs_temp = {lang: probs[lang]/sum(probs.values()) for lang in probs}
probs = [probs_temp[lang] for lang in language_list]
while batch_count != args.num_batches:
curr_batch_count = 0
encoder_input_batch = []
decoder_input_batch = []
decoder_label_batch = []
batch_count += 1
max_src_sent_len = 0
max_tgt_sent_len = 0
prev_max_src_sent_len = 0
prev_max_tgt_sent_len = 0
start = time.time()
sents_in_batch = 0
dropped_sentence = "" ## We will save the sentence to be dropped this batch and add it to the next batch.
if args.num_domains_for_domain_classifier > 1:
domain_classifier_labels = []
while True:
if dropped_sentence != "":
sentence = dropped_sentence # Reuse the previous sentence
dropped_sentence = ""
else:
language = random.choices(language_list, probs)[0]
sentence = next(language_file_dict[language]).strip()
if args.num_domains_for_domain_classifier > 1: ## Careful when handling domains for monolingual corpora.
lang = language.strip().split("-")[0]
lang = lang if args.use_official_pretrained else "<2"+lang+">"
else:
lang = language if args.use_official_pretrained else "<2"+language+">"
if type(mp_val_or_range) is float:
mask_percent = mp_val_or_range
else:
mask_percent = random.uniform(mp_val_or_range[0], mp_val_or_range[1])
if args.is_document:
sentence_split, sentence, sent_len = sub_sample_and_permute_document(sentence, args.document_level_sentence_delimiter, args.max_length)
else:
sentence_split = sentence.split(" ")
sent_len = len(sentence_split)
if sent_len < 1:
continue
if sent_len > args.max_length: ## Initial truncation
sentence_split = sentence_split[:args.max_length]
sentence = " ".join(sentence_split)
sent_len = args.max_length
mask_count = 0
max_mask_count = int(mask_percent*sent_len)
spans_to_mask = list(np.random.poisson(args.token_masking_lambda, 1000))
curr_sent_len = sent_len
while mask_count < max_mask_count:
try:
span_to_mask = spans_to_mask[0]
del spans_to_mask[0]
if span_to_mask > (max_mask_count-mask_count): ## Cant mask more than the allowable number of tokens.
continue
idx_to_mask = random.randint(sent_len//2 if args.future_prediction else 0, (curr_sent_len-1)-(span_to_mask-1)) ## We mask only the remaining half of the sentence to encourage the model to learn representations that can make do without most of the future tokens.
if mask_tok not in sentence_split[idx_to_mask:idx_to_mask+span_to_mask] and args.document_level_sentence_delimiter not in sentence_split[idx_to_mask:idx_to_mask+span_to_mask]:
sentence_split[idx_to_mask:idx_to_mask+span_to_mask] = [mask_tok]
mask_count += span_to_mask # We assume that with a low probability there are mask insertions when span lengths are 0 which may cause more mask tokens than planned. I have decided not to count these insersions towards the maximum maskable limit. This means that the total number of mask tokens will be a bit higher than what it should be.
curr_sent_len -= (span_to_mask-1)
except:
break ## If we cannot get a properly masked sentence despite all our efforts then we just give up and continue with what we have so far.
masked_sentence = " ".join(sentence_split)
if args.use_official_pretrained and "bart" in args.pretrained_model and "mbart" not in args.pretrained_model: ## The bart tokenizer is wacky so we need to tweak the inputs a bit
iids = tok(masked_sentence, return_tensors="pt").input_ids
curr_src_sent_len = len(iids[0])
iids = tok(sentence, return_tensors="pt").input_ids
curr_tgt_sent_len = len(iids[0])
else:
iids = tok(lang + " " + masked_sentence + " </s>", add_special_tokens=False, return_tensors="pt").input_ids
curr_src_sent_len = len(iids[0])
iids = tok("<s> " + sentence, add_special_tokens=False, return_tensors="pt").input_ids
curr_tgt_sent_len = len(iids[0])
if curr_src_sent_len > max_src_sent_len:
prev_max_src_sent_len = max_src_sent_len
max_src_sent_len = curr_src_sent_len
if curr_tgt_sent_len > max_tgt_sent_len:
prev_max_tgt_sent_len = max_tgt_sent_len
max_tgt_sent_len = curr_tgt_sent_len
if args.batch_size_indicates_lines: ## Batch a fixed number of sentences. We can safely add the current example because we assume that the user knows the max batch size.
if args.use_official_pretrained and "bart" in args.pretrained_model and "mbart" not in args.pretrained_model: ## The bart tokenizer is wacky so we need to tweak the inputs a bit
encoder_input_batch.append(masked_sentence)
decoder_input_batch.append(sentence)
else:
encoder_input_batch.append(masked_sentence + " </s> " + lang)
decoder_input_batch.append(lang + " " + sentence)
decoder_label_batch.append(sentence + " </s>")
if args.tokenization_sampling:
decoder_input_batch[-1] += " </s>" ## In case of stochastic subword segmentation we have to generate the decoder label ids from the decoder input ids. This will make the model behavior sliiiiiightly different from how it was when stochastic decoding is not done. However it should have no major difference. In the non stochastic case, the </s> or EOS token is never fed as the input but in the stochastic case that token is fed as the input. So this means in the non stochastic case, the end of decoder and labels will be something like: "a good person <pad> <pad> <pad>" and "good person </s> <pad <pad> <pad>". In the stochastic case, the end of decoder and labels will be something like: "a good person </s> <pad> <pad>" and "good person </s> <pad> <pad <pad>". Now think about how we compute loss. When the label is a pad, the loss is never propagated through it. So the model will never learn anything when </s> or <pad> will be the input. Furthermore, the generation of </s> is what dictates the end of generation. When the model generates a </s> the sequence is taken out of the computation process and therefore whatever it generates after that will not be considered at all towards its final score. In conclusion, there should be no practical difference in outcomes between the two batching approaches.
sents_in_batch += 1
if args.num_domains_for_domain_classifier > 1:
domain_classifier_labels.append(files[language][1])
if sents_in_batch == args.batch_size:
break
else:
potential_batch_count = max(max_src_sent_len, max_tgt_sent_len)*(sents_in_batch+1) ## Note that this will be unreliable when we do stochastic subword segmentation.
if potential_batch_count > args.batch_size: ## We will drop this sentence for now because we may go over the limit of what the GPU can handle. It may be used in a future iteration. Note that this will be unreliable when we do stochastic subword segmentation.
dropped_sentence = sentence
max_src_sent_len = prev_max_src_sent_len
max_tgt_sent_len = prev_max_tgt_sent_len
break
if args.use_official_pretrained and "bart" in args.pretrained_model and "mbart" not in args.pretrained_model: ## The bart tokenizer is wacky so we need to tweak the inputs a bit
encoder_input_batch.append(masked_sentence)
decoder_input_batch.append(sentence)
else:
encoder_input_batch.append(masked_sentence + " </s> " + lang)
decoder_input_batch.append(lang + " " + sentence)
decoder_label_batch.append(sentence + " </s>")
if args.tokenization_sampling:
decoder_input_batch[-1] += " </s>" ## In case of stochastic subword segmentation we have to generate the decoder label ids from the decoder input ids. This will make the model behavior sliiiiiightly different from how it was when stochastic decoding is not done. However it should have no major difference. In the non stochastic case, the </s> or EOS token is never fed as the input but in the stochastic case that token is fed as the input. So this means in the non stochastic case, the end of decoder and labels will be something like: "a good person <pad> <pad> <pad>" and "good person </s> <pad <pad> <pad>". In the stochastic case, the end of decoder and labels will be something like: "a good person </s> <pad> <pad>" and "good person </s> <pad> <pad <pad>". Now think about how we compute loss. When the label is a pad, the loss is never propagated through it. So the model will never learn anything when </s> or <pad> will be the input. Furthermore, the generation of </s> is what dictates the end of generation. When the model generates a </s> the sequence is taken out of the computation process and therefore whatever it generates after that will not be considered at all towards its final score. In conclusion, there should be no practical difference in outcomes between the two batching approaches.
if args.num_domains_for_domain_classifier > 1:
domain_classifier_labels.append(files[language][1])
sents_in_batch += 1
if len(encoder_input_batch) == 0:
print("Zero size batch due to an abnormal example. Skipping empty batch.")
continue
if args.use_official_pretrained and "bart" in args.pretrained_model and "mbart" not in args.pretrained_model: ## The bart tokenizer is wacky so we need to tweak the inputs a bit. No support for stochastic tokenizer because the roberta tokenizer which is inherited from GPT2 tokenizer does its onw weird BPE and I dont want to mess with it.
input_ids = tok(encoder_input_batch, return_tensors="pt", padding=True).input_ids
else:
input_ids = tok(encoder_input_batch, add_special_tokens=False, return_tensors="pt", padding=True, sample=args.tokenization_sampling, nbest=args.tokenization_nbest_list_size, alpha_or_dropout=args.tokenization_alpha_or_dropout).input_ids
if args.hard_truncate_length > 0 and len(input_ids[0]) > args.hard_truncate_length: ## Truncate again if we exceed the maximum sequence length.
input_ids = input_ids[:,:args.hard_truncate_length]
input_masks = (input_ids != tok.pad_token_id).int()
if args.use_official_pretrained and "bart" in args.pretrained_model and "mbart" not in args.pretrained_model: ## The bart tokenizer is wacky so we need to tweak the inputs a bit. No support for stochastic tokenizer because the roberta tokenizer which is inherited from GPT2 tokenizer does its onw weird BPE and I dont want to mess with it.
decoder_input_ids = tok(decoder_input_batch, return_tensors="pt", padding=True).input_ids
else:
decoder_input_ids = tok(decoder_input_batch, add_special_tokens=False, return_tensors="pt", padding=True, sample=args.tokenization_sampling, nbest=args.tokenization_nbest_list_size, alpha_or_dropout=args.tokenization_alpha_or_dropout).input_ids
if args.hard_truncate_length > 0 and len(decoder_input_ids[0]) > args.hard_truncate_length: ## Truncate again if we exceed the maximum sequence length.
decoder_input_ids = decoder_input_ids[:,:args.hard_truncate_length]
if (args.use_official_pretrained and "bart" in args.pretrained_model and "mbart" not in args.pretrained_model) or args.tokenization_sampling: ## We have to be careful when using stochastic segmentation. Note again that there will be no stoachastic segmentation with the official bart model. IT JUST WONT WORK.
labels = decoder_input_ids[:,1:]
decoder_input_ids = decoder_input_ids[:,:-1]
else:
labels = tok(decoder_label_batch, add_special_tokens=False, return_tensors="pt", padding=True).input_ids
if args.hard_truncate_length > 0 and len(labels[0]) > args.hard_truncate_length: ## Truncate again if we exceed the maximum sequence length.
labels = labels[:,:args.hard_truncate_length]
end = time.time()
# if rank == 0:
# print(input_ids.size(), functools.reduce(lambda x,y: x*y, input_ids.size()), decoder_input_ids.size(), functools.reduce(lambda x,y: x*y, decoder_input_ids.size()))
if args.num_domains_for_domain_classifier > 1:
yield input_ids, input_masks, decoder_input_ids, [labels, domain_classifier_labels] ## We are going to pass the domain indicator batch along with the labels
else:
yield input_ids, input_masks, decoder_input_ids, labels
def generate_batches_lm(tok, args, rank, files): ## Address compatibilities of the meta tokens when using official models
"""Generates the source, target and source attention masks for denoising. Long sequences are truncated and short sequences are ignored."""
batch_count = 0
language_list = list(files.keys())
print("Training for:", language_list)
language_file_dict = {}
probs = {}
for l in language_list:
file_content = open(files[l]+"."+"%02d" % rank).readlines()
probs[l] = len(file_content)
language_file_dict[l] = yield_corpus_indefinitely_mono(file_content, l)
probs_temp = {lang: probs[lang]/sum(probs.values()) for lang in probs}
probs = probs_temp
probs_temp = {lang: probs[lang]**(1.0/args.data_sampling_temperature) for lang in probs} ## Temperature sampling probabilities.
probs = probs_temp
probs_temp = {lang: probs[lang]/sum(probs.values()) for lang in probs}
probs = [probs_temp[lang] for lang in language_list]
num_langs = len(language_list)
language_indices = list(range(num_langs))
has_rem=False
while batch_count != args.num_batches:
curr_batch_count = 0
input_batch = []
batch_count += 1
max_sent_len = 0
prev_max_sent_len = 0
start = time.time()
sents_in_batch = 0
while True:
if not has_rem:
language_idx = random.choices(language_indices, probs)[0]
sentence = next(language_file_dict[language_list[language_idx]]).strip()
lang = "<2"+language_list[language_idx]+">"
sentence_split = sentence.split(" ")
sent_len = len(sentence_split)
if sent_len < 1:
continue
if args.train_with_meta and not has_rem and random.random() <= 0.2: ## Use the first part of the document only 20% of the time.
randidx = 0
sentence_split_curr = sentence_split[randidx:randidx+args.max_length]
sentence_curr=" ".join(sentence_split)
if args.use_official_pretrained:
input_batch.append(sentence_curr)
else:
input_batch.append(lang + " " + sentence_curr)
sents_in_batch += 1
if sents_in_batch == args.batch_size: ## We will drop this sentence for now. It may be used in a future iteration.
has_rem=True
break
has_rem=False
randidx = random.randint(0,max(sent_len-args.max_length,0))
sentence_split = sentence_split[randidx:randidx+args.max_length]
sentence=" ".join(sentence_split)
if args.use_official_pretrained:
input_batch.append(sentence)
else:
input_batch.append(lang + " " + sentence)
sents_in_batch += 1
if sents_in_batch == args.batch_size: ## We will drop this sentence for now. It may be used in a future iteration.
break
if args.use_official_pretrained:
input_ids = tok(input_batch, return_tensors="pt", padding=True).input_ids
else:
input_ids = tok(input_batch, add_special_tokens=False, return_tensors="pt", padding=True).input_ids
if args.hard_truncate_length > 0 and len(input_ids[0]) > args.hard_truncate_length: ## Truncate again if we exceed the maximum sequence length.
input_ids = input_ids[:,:args.hard_truncate_length]
labels = input_ids[:,1:]
input_ids = input_ids[:,:-1]
end = time.time()
yield input_ids, labels
def assert_all_frozen(model):
"""Checks if frozen parameters are all linked to each other or not. Ensures no disjoint components of graphs."""
model_grads: List[bool] = list(grad_status(model))
n_require_grad = sum(lmap(int, model_grads))
npars = len(model_grads)
assert not any(model_grads), f"{n_require_grad/npars:.1%} of {npars} weights require grad"
def grad_status(model):
"""Checks whether the parameter needs gradient or not. Part of asserting that the correct parts of the model are frozen."""
return (par.requires_grad for par in model.parameters())
def freeze_params(model):
"""Set requires_grad=False for each of model.parameters() thereby freezing those parameters. We use this when we want to prevent parts of the model from being trained."""
for par in model.parameters():
par.requires_grad = False
def freeze_embeds(model):
"""Freeze token embeddings and positional embeddings for bart, just token embeddings for mbart."""
try:
freeze_params(model.model.shared)
for d in [model.model.encoder, model.model.decoder]:
freeze_params(d.embed_positions)
freeze_params(d.embed_tokens)
except AttributeError:
freeze_params(model.shared)
for d in [model.encoder, model.decoder]:
freeze_params(d.embed_tokens)
def generate_batches_eval_bilingual(tok, args, file, slang):
"""Generates the source sentences for the dev set. This ensures that long sentences are truncated and then batched. The batch size is the number of sentences and not the number of tokens."""
src_file = file
curr_batch_count = 0
encoder_input_batch = []
if args.multi_source: ## Additional source batch and length info
encoder_input_batch_parent = []
slang = slang.split("-")
slang_parent = slang[0]
slang = slang[1]
lang_parent = slang_parent if args.use_official_pretrained else "<2"+slang_parent+">"
lang = slang if args.use_official_pretrained else "<2"+slang+">"
for src_line in src_file:
start = time.time()
src_sent = src_line.strip()
if args.multi_source: ## We assume that we use a N-way corpus of 3 languages X, Y and Z. We want to distill Y-Z behavior into X-Z where the Y-Z pair also has additional larger corpora but X-Z does not. As such the source sentence should be a tab separated sentence consisting of X[tab]Y.
src_sent = src_sent.split("\t")
src_sent_parent = src_sent[0].strip() ## This is the sentence for Y
src_sent = src_sent[1] ## This is the sentence for X
src_sent_split = src_sent.split(" ")
sent_len = len(src_sent_split)
if sent_len > args.max_src_length: ## Initial truncation
src_sent_split=src_sent_split[:args.max_src_length]
src_sent = " ".join(src_sent_split)
sent_len = args.max_src_length
if args.use_official_pretrained and "bart" in args.pretrained_model and "mbart" not in args.pretrained_model: ## The bart tokenizer is wacky so we need to tweak the inputs a bit
encoder_input_batch.append(src_sent)
else:
encoder_input_batch.append(src_sent + " </s> " + lang)
if args.multi_source: ## Process the batch for the additional source as well.
src_sent_split_parent = src_sent_parent.split(" ")
sent_len_parent = len(src_sent_split_parent)
if sent_len_parent > args.max_src_length: ## Initial truncation
src_sent_split_parent=src_sent_split_parent[:args.max_src_length]
src_sent_parent = " ".join(src_sent_split_parent)
sent_len_parent = args.max_src_length
encoder_input_batch_parent.append(src_sent_parent + " </s> " + lang_parent)
curr_batch_count += 1
if curr_batch_count == args.dev_batch_size:
if args.use_official_pretrained and "bart" in args.pretrained_model and "mbart" not in args.pretrained_model: ## The bart tokenizer is wacky so we need to tweak the inputs a bit
input_ids = tok(encoder_input_batch, return_tensors="pt", padding=True).input_ids
else:
input_ids = tok(encoder_input_batch, add_special_tokens=False, return_tensors="pt", padding=True).input_ids
if args.hard_truncate_length > 0 and len(input_ids[0]) > args.hard_truncate_length:
input_ids = input_ids[:,:args.hard_truncate_length]
input_masks = (input_ids != tok.pad_token_id).int()
if args.multi_source: ## Process the batch for the additional source as well.
input_ids_parent = tok(encoder_input_batch_parent, add_special_tokens=False, return_tensors="pt", padding=True).input_ids
if args.hard_truncate_length > 0 and len(input_ids_parent[0]) > args.hard_truncate_length:
input_ids_parent = input_ids_parent[:,:args.hard_truncate_length]
input_masks_parent = (input_ids_parent != tok.pad_token_id).int()
#print(input_ids.size(), input_ids_parent.size())
yield [input_ids, input_ids_parent], [input_masks, input_masks_parent]
else:
yield input_ids, input_masks
end = time.time()
curr_batch_count = 0
encoder_input_batch = []
if args.multi_source: ## Additional source batch and length info
encoder_input_batch_parent = []
if len(encoder_input_batch) != 0:
if args.use_official_pretrained and "bart" in args.pretrained_model and "mbart" not in args.pretrained_model: ## The bart tokenizer is wacky so we need to tweak the inputs a bit
input_ids = tok(encoder_input_batch, return_tensors="pt", padding=True).input_ids
else:
input_ids = tok(encoder_input_batch, add_special_tokens=False, return_tensors="pt", padding=True).input_ids
if args.hard_truncate_length > 0 and len(input_ids[0]) > args.hard_truncate_length:
input_ids = input_ids[:,:args.hard_truncate_length]
input_masks = (input_ids != tok.pad_token_id).int()
if args.multi_source: ## Process the batch for the additional source as well.
input_ids_parent = tok(encoder_input_batch_parent, add_special_tokens=False, return_tensors="pt", padding=True).input_ids
if args.hard_truncate_length > 0 and len(input_ids_parent[0]) > args.hard_truncate_length:
input_ids_parent = input_ids_parent[:,:args.hard_truncate_length]
input_masks_parent = (input_ids_parent != tok.pad_token_id).int()
yield [input_ids, input_ids_parent], [input_masks, input_masks_parent]
else:
yield input_ids, input_masks
def generate_batches_bilingual(tok, args, files, rank):
"""Generates the source, target and source attention masks for the training set. The source and target sentences are ignored if empty and are truncated if longer than a threshold. The batch size in this context is the maximum number of tokens in the batch post padding."""
if args.tokenization_sampling:
print("Stochastic tokenizer will be used.")
if "bart" in args.tokenizer_name_or_path:
print("BPE dropout with a dropout probability of", args.tokenization_alpha_or_dropout, "will be used.")
else:
print("Sentencepiece regularization with an alpha value of", args.tokenization_alpha_or_dropout, "will be used.")
batch_count = 0
if args.use_official_pretrained:
mask_tok = "<mask>"
else:
mask_tok = "[MASK]"
if len(args.token_masking_probs_range) == 1:
mp_val_or_range = args.token_masking_probs_range[0]
elif len(args.token_masking_probs_range) == 2:
mp_val_or_range = args.token_masking_probs_range
if not args.is_summarization or args.source_masking_for_bilingual:
print("Masking ratio:", mp_val_or_range)
language_list = list(files.keys())
print("Training for:", language_list)
language_file_dict = {}
probs = {}
for l in language_list:
src_file_content = open(files[l][0]+"."+"%02d" % rank).readlines()
tgt_file_content = open(files[l][1]+"."+"%02d" % rank).readlines()
probs[l] = len(src_file_content)
file_content = list(zip(src_file_content, tgt_file_content))
language_file_dict[l] = yield_corpus_indefinitely_bi(file_content, l)
print("Corpora stats:", probs)
probs_temp = {lang: probs[lang]/sum(probs.values()) for lang in probs}
probs = probs_temp
probs_temp = {lang: probs[lang]**(1.0/args.data_sampling_temperature) for lang in probs} ## Temperature sampling probabilities.
probs = probs_temp
probs_temp = {lang: probs[lang]/sum(probs.values()) for lang in probs}
probs = [probs_temp[lang] for lang in language_list]
while batch_count != args.num_batches:
curr_batch_count = 0
encoder_input_batch = []
decoder_input_batch = []
decoder_label_batch = []
batch_count += 1
max_src_sent_len = 0
max_tgt_sent_len = 0
prev_max_src_sent_len = 0
prev_max_tgt_sent_len = 0
start = time.time()
sents_in_batch = 0
dropped_source_sentence = "" ## We will save the source sentence to be dropped this batch and add it to the next batch.
dropped_target_sentence = "" ## We will save the target sentence to be dropped this batch and add it to the next batch.
if args.cross_distillation or args.multi_source: ## We assume an additional source language.
max_src_sent_len_parent = 0
prev_max_src_sent_len_parent = 0
encoder_input_batch_parent = []
dropped_source_sentence_parent = "" ## We will save the source sentence to be dropped this batch and add it to the next batch.
if args.num_domains_for_domain_classifier > 1:
domain_classifier_labels = []
while True:
if dropped_source_sentence != "":
src_sent = dropped_source_sentence # Reuse the previous source sentence
tgt_sent = dropped_target_sentence # Reuse the previous target sentence
dropped_source_sentence = ""
dropped_target_sentence = ""
if args.cross_distillation or args.multi_source: ## We assume an additional source language.
src_sent_parent = dropped_source_sentence_parent # Reuse the previous source sentence
dropped_source_sentence_parent = ""
else:
language = random.choices(language_list, probs)[0]
src_sent, tgt_sent = next(language_file_dict[language])
if args.cross_distillation or args.multi_source: ## We assume that we use a N-way corpus of 3 languages X, Y and Z. We want to distill Y-Z behavior into X-Z where the Y-Z pair also has additional larger corpora but X-Z does not. As such the source sentence should be a tab separated sentence consisting of X[tab]Y.
src_sent = src_sent.split("\t")
src_sent_parent = src_sent[0].strip() ## This is the sentence for Y
src_sent = src_sent[1] ## This is the sentence for X
src_sent = src_sent.strip()
tgt_sent = tgt_sent.strip()
slangtlang = language.strip().split("-")
if args.cross_distillation or args.multi_source: ## In this case only we provide a hyphen separated triplet to represent languages X, Y and Z.
slang_parent = slangtlang[0] if args.use_official_pretrained else "<2"+slangtlang[0]+">"
slang = slangtlang[1] if args.use_official_pretrained else "<2"+slangtlang[1]+">"
tlang = slangtlang[2] if args.use_official_pretrained else "<2"+slangtlang[2]+">"
else:
slang = slangtlang[0] if args.use_official_pretrained else "<2"+slangtlang[0]+">"
tlang = slangtlang[1] if args.use_official_pretrained else "<2"+slangtlang[1]+">"
src_sent_split = src_sent.split(" ")
tgt_sent_split = tgt_sent.split(" ")
tgt_sent_len = len(tgt_sent_split)
src_sent_len = len(src_sent_split)
if src_sent_len <=1 or tgt_sent_len <=1:
continue
else: # Initial truncation
if src_sent_len >= args.max_src_length:
src_sent_split = src_sent_split[:args.max_src_length]
src_sent = " ".join(src_sent_split)
src_sent_len = args.max_src_length
if tgt_sent_len >= args.max_tgt_length:
tgt_sent_split = tgt_sent_split[:args.max_tgt_length]
tgt_sent = " ".join(tgt_sent_split)
tgt_sent_len = args.max_tgt_length
if args.cross_distillation or args.multi_source:
src_sent_split_parent = src_sent_parent.split(" ")
src_sent_len_parent = len(src_sent_split_parent)
if src_sent_len_parent <=1:
continue
else: # Initial truncation
if src_sent_len_parent >= args.max_src_length: ## The same sentence length constraint applies to Y as it does to X.
src_sent_split_parent = src_sent_split_parent[:args.max_src_length]
src_sent_parent = " ".join(src_sent_split_parent)
src_sent_len_parent = args.max_src_length
if (slang == tlang and not args.is_summarization) or args.source_masking_for_bilingual: ## Copying task should DEFINITELY use source masking unless we are doing summarization. We wont bother using this condition for cross distillation. In fact a single condition based on a flag should be sufficient but I am too lazy to make a change. Come fight me if you disagree.
if args.source_masking_for_bilingual:
mask_percent = random.uniform(0.0, mp_val_or_range[0]) ## Do less masking
else:
if type(mp_val_or_range) is float:
mask_percent = mp_val_or_range
else:
mask_percent = random.uniform(mp_val_or_range[0], mp_val_or_range[1])
mask_count = 0
max_mask_count = int(mask_percent*src_sent_len)
spans_to_mask = list(np.random.poisson(args.token_masking_lambda, 1000))
curr_sent_len = src_sent_len
while mask_count < max_mask_count:
try:
span_to_mask = spans_to_mask[0]
del spans_to_mask[0]
if span_to_mask > (max_mask_count-mask_count): ## Cant mask more than the allowable number of tokens.
continue
idx_to_mask = random.randint(sent_len//2 if args.future_prediction else 0, (curr_sent_len-1)-(span_to_mask-1))
if mask_tok not in src_sent_split[idx_to_mask:idx_to_mask+span_to_mask]:
src_sent_split[idx_to_mask:idx_to_mask+span_to_mask] = [mask_tok]
mask_count += span_to_mask # We assume that with a low probability there are mask insertions when span lengths are 0 which may cause more mask tokens than planned. I have decided not to count these insersions towards the maximum maskable limit. This means that the total number of mask tokens will be a bit higher than what it should be.
curr_sent_len -= (span_to_mask-1)
except:
break ## If we cannot get a properly masked sentence despite all our efforts then we just give up and continue with what we have so far.
src_sent = " ".join(src_sent_split)
if args.use_official_pretrained and "bart" in args.pretrained_model and "mbart" not in args.pretrained_model: ## The bart tokenizer is wacky so we need to tweak the inputs a bit
iids = tok(src_sent, return_tensors="pt").input_ids
curr_src_sent_len = len(iids[0])
else:
iids = tok(src_sent + " </s> " + slang, add_special_tokens=False, return_tensors="pt").input_ids
curr_src_sent_len = len(iids[0])
if args.use_official_pretrained and "bart" in args.pretrained_model and "mbart" not in args.pretrained_model: ## The bart tokenizer is wacky so we need to tweak the inputs a bit
iids = tok(tgt_sent, return_tensors="pt").input_ids
curr_tgt_sent_len = len(iids[0])
else:
iids = tok(tlang + " " + tgt_sent, add_special_tokens=False, return_tensors="pt").input_ids
curr_tgt_sent_len = len(iids[0])
if args.cross_distillation or args.multi_source:
iids = tok(src_sent_parent + " </s> " + slang_parent, add_special_tokens=False, return_tensors="pt").input_ids
curr_src_sent_len_parent = len(iids[0])
if curr_src_sent_len_parent > max_src_sent_len_parent:
prev_max_src_sent_len_parent = max_src_sent_len_parent
max_src_sent_len_parent = curr_src_sent_len_parent
if curr_src_sent_len > max_src_sent_len:
prev_max_src_sent_len = max_src_sent_len
max_src_sent_len = curr_src_sent_len
if curr_tgt_sent_len > max_tgt_sent_len:
prev_max_tgt_sent_len = max_tgt_sent_len
max_tgt_sent_len = curr_tgt_sent_len
if args.batch_size_indicates_lines: ## Batch a fixed number of sentences. We can safely add the current example because we assume that the user knows the max batch size.
if args.use_official_pretrained and "bart" in args.pretrained_model and "mbart" not in args.pretrained_model: ## The bart tokenizer is wacky so we need to tweak the inputs a bit
encoder_input_batch.append(src_sent)
decoder_input_batch.append(tgt_sent)
else:
encoder_input_batch.append(src_sent + " </s> " + slang)
if args.unify_encoder:
decoder_input_batch.append(tgt_sent + " </s> " + tlang)
decoder_label_batch.append(tgt_sent + " </s> " + tlang) ## This should not be used when we unify encoders.
else:
decoder_input_batch.append(tlang + " " + tgt_sent)
decoder_label_batch.append(tgt_sent + " </s>")
if args.tokenization_sampling:
decoder_input_batch[-1] += " </s>" ## In case of stochastic subword segmentation we have to generate the decoder label ids from the decoder input ids. This will make the model behavior sliiiiiightly different from how it was when stochastic decoding is not done. However it should have no major difference. In the non stochastic case, the </s> or EOS token is never fed as the input but in the stochastic case that token is fed as the input. So this means in the non stochastic case, the end of decoder and labels will be something like: "a good person <pad> <pad> <pad>" and "good person </s> <pad <pad> <pad>". In the stochastic case, the end of decoder and labels will be something like: "a good person </s> <pad> <pad>" and "good person </s> <pad> <pad <pad>". Now think about how we compute loss. When the label is a pad, the loss is never propagated through it. So the model will never learn anything when </s> or <pad> will be the input. Furthermore, the generation of </s> is what dictates the end of generation. When the model generates a </s> the sequence is taken out of the computation process and therefore whatever it generates after that will not be considered at all towards its final score. In conclusion, there should be no practical difference in outcomes between the two batching approaches.
if args.cross_distillation or args.multi_source:
encoder_input_batch_parent.append(src_sent_parent + " </s> " + slang_parent)
sents_in_batch += 1
if args.num_domains_for_domain_classifier > 1:
domain_classifier_labels.append(files[language][2])
if sents_in_batch == args.batch_size:
break
else:
if args.cross_distillation or args.multi_source:
potential_batch_count = max(max_src_sent_len, max_src_sent_len_parent, max_tgt_sent_len)*(sents_in_batch+1) ## We limit ourselves based on the maximum of either source or target.
else:
potential_batch_count = max(max_src_sent_len, max_tgt_sent_len)*(sents_in_batch+1) ## We limit ourselves based on the maximum of either source or target.
if potential_batch_count > args.batch_size: ## We will drop this sentence for now. It may be used in a future iteration. Note that this will be unreliable when we do stochastic subword segmentation.
max_src_sent_len = prev_max_src_sent_len
max_tgt_sent_len = prev_max_tgt_sent_len
dropped_source_sentence = src_sent
dropped_target_sentence = tgt_sent
if args.cross_distillation or args.multi_source:
max_src_sent_len_parent = prev_max_src_sent_len_parent
dropped_source_sentence_parent = src_sent_parent
break
if args.use_official_pretrained and "bart" in args.pretrained_model and "mbart" not in args.pretrained_model: ## The bart tokenizer is wacky so we need to tweak the inputs a bit
encoder_input_batch.append(src_sent)
decoder_input_batch.append(tgt_sent)
else:
encoder_input_batch.append(src_sent + " </s> " + slang)
if args.unify_encoder:
decoder_input_batch.append(tgt_sent + " </s> " + tlang)
decoder_label_batch.append(tgt_sent + " </s> " + tlang) ## This should not be used when we unify encoders.
else:
decoder_input_batch.append(tlang + " " + tgt_sent)
decoder_label_batch.append(tgt_sent + " </s>")
if args.tokenization_sampling: