-
Notifications
You must be signed in to change notification settings - Fork 1
/
fbench.ino
820 lines (639 loc) · 27.8 KB
/
fbench.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
// 20201121 : Arduino version
//~ #pragma GCC optimize("Os") // 4.670s
//~ #pragma GCC optimize("O0") // 5.105s
//~ #pragma GCC optimize("O1") // 4.657s
//~ #pragma GCC optimize("O2") // 4.651s
//~ #pragma GCC optimize("O3") // 4.651s (LGT@32MHz) ; 9.301s (LGT@16MHz) ; 10.894s (ATmega328p@16MHz)
#pragma GCC optimize("Ofast") // 4.605s (LGT@32MHz) ; 9.209s (LGT@16MHz) ; 10.774s (ATmega328p@16MHz)
/*
John Walker's Floating Point Benchmark, derived from...
Marinchip Interactive Lens Design System
John Walker December 1980
By John Walker
http://www.fourmilab.ch/
This program may be used, distributed, and modified freely as
long as the origin information is preserved.
This is a complete optical design raytracing algorithm,
stripped of its user interface and recast into portable C. It
not only determines execution speed on an extremely floating
point (including trig function) intensive real-world
application, it checks accuracy on an algorithm that is
exquisitely sensitive to errors. The performance of this
program is typically far more sensitive to changes in the
efficiency of the trigonometric library routines than the
average floating point program.
The benchmark may be compiled in two modes. If the symbol
INTRIG is defined, built-in trigonometric and square root
routines will be used for all calculations. Timings made with
INTRIG defined reflect the machine's basic floating point
performance for the arithmetic operators. If INTRIG is not
defined, the system library <math.h> functions are used.
Results with INTRIG not defined reflect the system's library
performance and/or floating point hardware support for trig
functions and square root. Results with INTRIG defined are a
good guide to general floating point performance, while
results with INTRIG undefined indicate the performance of an
application which is math function intensive.
Special note regarding errors in accuracy: this program has
generated numbers identical to the last digit it formats and
checks on the following machines, floating point
architectures, and languages:
Marinchip 9900 QBASIC IBM 370 double-precision (REAL * 8) format
IBM PC / XT / AT Lattice C IEEE 64 bit, 80 bit temporaries
High C same, in line 80x87 code
BASICA "Double precision"
Quick BASIC IEEE double precision, software routines
Sun 3 C IEEE 64 bit, 80 bit temporaries,
in-line 68881 code, in-line FPA code.
MicroVAX II C Vax "G" format floating point
Macintosh Plus MPW C SANE floating point, IEEE 64 bit format
implemented in ROM.
Inaccuracies reported by this program should be taken VERY
SERIOUSLY INDEED, as the program has been demonstrated to be
invariant under changes in floating point format, as long as
the format is a recognised double precision format. If you
encounter errors, please remember that they are just as likely
to be in the floating point editing library or the
trigonometric libraries as in the low level operator code.
The benchmark assumes that results are basically reliable, and
only tests the last result computed against the reference. If
you're running on a suspect system you can compile this
program with ACCURACY defined. This will generate a version
which executes as an infinite loop, performing the ray trace
and checking the results on every pass. All incorrect results
will be reported.
Representative timings are given below. All have been
normalised as if run for 1000 iterations.
Time in seconds Computer, Compiler, and notes
Normal INTRIG
3466.00 4031.00 Commodore 128, 2 Mhz 8510 with software floating
point. Abacus Software/Data-Becker Super-C 128,
version 3.00, run in fast (2 Mhz) mode. Note:
the results generated by this system differed
from the reference results in the 8th to 10th
decimal place.
3290.00 IBM PC/AT 6 Mhz, Microsoft/IBM BASICA version A3.00.
Run with the "/d" switch, software floating point.
2131.50 IBM PC/AT 6 Mhz, Lattice C version 2.14, small model.
This version of Lattice compiles subroutine
calls which either do software floating point
or use the 80x87. The machine on which I ran
this had an 80287, but the results were so bad
I wonder if it was being used.
1598.00 Macintosh Plus, MPW C, SANE Software floating point.
1582.13 Marinchip 9900 2 Mhz, QBASIC compiler with software
floating point. This was a QBASIC version of the
program which contained the identical algorithm.
404.00 IBM PC/AT 6 Mhz, Microsoft QuickBASIC version 2.0.
Software floating point.
165.15 IBM PC/AT 6 Mhz, Metaware High C version 1.3, small
model. This was compiled to call subroutines for
floating point, and the machine contained an 80287
which was used by the subroutines.
143.20 Macintosh II, MPW C, SANE calls. I was unable to
determine whether SANE was using the 68881 chip or
not.
121.80 Sun 3/160 16 Mhz, Sun C. Compiled with -fsoft switch
which executes floating point in software.
78.78 110.11 IBM RT PC (Model 6150). IBM AIX 1.0 C compiler
with -O switch.
75.2 254.0 Microsoft Quick C 1.0, in-line 8087 instructions,
compiled with 80286 optimisation on. (Switches
were -Ol -FPi87-G2 -AS). Small memory model.
69.50 IBM PC/AT 6Mhz, Borland Turbo BASIC 1.0. Compiled
in "8087 required" mode to generate in-line
code for the math coprocessor.
66.96 IBM PC/AT 6Mhz, Microsoft QuickBASIC 4.0. This
release of QuickBASIC compiles code for the
80287 math coprocessor.
66.36 206.35 IBM PC/AT 6Mhz, Metaware High C version 1.3, small
model. This was compiled with in-line code for the
80287 math coprocessor. Trig functions still call
library routines.
63.07 220.43 IBM PC/AT, 6Mhz, Borland Turbo C, in-line 8087 code,
small model, word alignment, no stack checking,
8086 code mode.
17.18 Apollo DN-3000, 12 Mhz 68020 with 68881, compiled
with in-line code for the 68881 coprocessor.
According to Apollo, the library routines are chosen
at runtime based on coprocessor presence. Since the
coprocessor was present, the library is supposed to
use in-line floating point code.
15.55 27.56 VAXstation II GPX. Compiled and executed under
VAX/VMS C.
15.14 37.93 Macintosh II, Unix system V. Green Hills 68020
Unix compiler with in-line code for the 68881
coprocessor (-O -ZI switches).
12.69 Sun 3/160 16 Mhz, Sun C. Compiled with -fswitch,
which calls a subroutine to select the fastest
floating point processor. This was using the 68881.
11.74 26.73 Compaq Deskpro 386, 16 Mhz 80386 with 16 Mhz 80387.
Metaware High C version 1.3, compiled with in-line
for the math coprocessor (but not optimised for the
80386/80387). Trig functions still call library
routines.
8.43 30.49 Sun 3/160 16 Mhz, Sun C. Compiled with -f68881,
generating in-line MC68881 instructions. Trig
functions still call library routines.
6.29 25.17 Sun 3/260 25 Mhz, Sun C. Compiled with -f68881,
generating in-line MC68881 instructions. Trig
functions still call library routines.
4.57 Sun 3/260 25 Mhz, Sun FORTRAN 77. Compiled with
-O -f68881, generating in-line MC68881 instructions.
Trig functions are compiled in-line. This used
the FORTRAN 77 version of the program, FBFORT77.F.
4.00 14.20 Sun386i/25 Mhz model 250, Sun C compiler.
4.00 14.00 Sun386i/25 Mhz model 250, Metaware C.
3.10 12.00 Compaq 386/387 25 Mhz running SCO Xenix 2.
Compiled with Metaware HighC 386, optimized
for 386.
3.00 12.00 Compaq 386/387 25MHZ optimized for 386/387.
2.96 5.17 Sun 4/260, Sparc RISC processor. Sun C,
compiled with the -O2 switch for global
optimisation.
2.47 COMPAQ 486/25, secondary cache disabled, High C,
486/387, inline f.p., small memory model.
2.20 3.40 Data General Motorola 88000, 16 Mhz, Gnu C.
1.56 COMPAQ 486/25, 128K secondary cache, High C, 486/387,
inline f.p., small memory model.
0.66 1.50 DEC Pmax, Mips processor.
0.63 0.91 Sun SparcStation 2, Sun C (SunOS 4.1.1) with
-O4 optimisation and "/usr/lib/libm.il" inline
floating point.
0.60 1.07 Intel 860 RISC processor, 33 Mhz, Greenhills
C compiler.
0.40 0.90 Dec 3MAX, MIPS 3000 processor, -O4.
0.31 0.90 IBM RS/6000, -O.
0.1129 0.2119 Dell Dimension XPS P133c, Pentium 133 MHz,
Windows 95, Microsoft Visual C 5.0.
0.0883 0.2166 Silicon Graphics Indigo, MIPS R4400,
175 Mhz, "-O3".
0.0351 0.0561 Dell Dimension XPS R100, Pentium II 400 MHz,
Windows 98, Microsoft Visual C 5.0.
0.0312 0.0542 Sun Ultra 2, UltraSPARC V9, 300 MHz, Solaris
2.5.1.
0.0141 0.0157 Raspberry Pi 3, ARMv8 Cortex-A53, 1.2 GHz,
Raspbian, GCC 4.9.2 -O3
0.00862 0.01074 Dell Inspiron 9100, Pentium 4, 3.4 GHz, gcc -O3.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef INTRIG
#include <math.h>
#endif
#define cot(x) (1.0 / tan(x))
#define TRUE 1
#define FALSE 0
#define max_surfaces 10
#define MAX_SERIAL_PRINTF_BUF 80
void serial_printf( const char *fmt, ... )
{
char buf[MAX_SERIAL_PRINTF_BUF]; // resulting string limited to 128 chars
va_list args;
va_start ( args, fmt );
vsnprintf( buf, MAX_SERIAL_PRINTF_BUF, fmt, args );
va_end( args );
Serial.print( buf );
}
void serial_printf( const __FlashStringHelper *fmt, ... )
{
char buf[MAX_SERIAL_PRINTF_BUF]; // resulting string limited to 128 chars
va_list args;
va_start (args, fmt);
#ifdef __AVR__
vsnprintf_P(buf, sizeof(buf), (const char *)fmt, args); // progmem for AVR
#else
vsnprintf(buf, sizeof(buf), (const char *)fmt, args); // for the rest of the world
#endif
va_end(args);
Serial.print(buf);
}
#define printf serial_printf
/* Local variables */
static char tbfr[132];
static short current_surfaces;
static short paraxial;
static double clear_aperture;
static double aberr_lspher;
static double aberr_osc;
static double aberr_lchrom;
static double max_lspher;
static double max_osc;
static double max_lchrom;
static double radius_of_curvature;
static double object_distance;
static double ray_height;
static double axis_slope_angle;
static double from_index;
static double to_index;
static double spectral_line[9];
static double s[max_surfaces][5];
static double od_sa[2][2];
int itercount; /* The iteration counter for the main loop
in the program is made global so that
the compiler should not be allowed to
optimise out the loop over the ray
tracing code. */
#ifndef ITERATIONS
#define ITERATIONS 1000
#endif
int niter = ITERATIONS; /* Iteration counter */
/* The test case used in this program is the design for a 4 inch
achromatic telescope objective used as the example in Wyld's
classic work on ray tracing by hand, given in Amateur Telescope
Making, Volume 3. */
const static double testcase[4][4] = {
{27.05, 1.5137, 63.6, 0.52},
{-16.68, 1, 0, 0.138},
{-16.68, 1.6164, 36.7, 0.38},
{-78.1, 1, 0, 0}
};
/* Internal trig functions (used only if INTRIG is defined). These
standard functions may be enabled to obtain timings that reflect
the machine's floating point performance rather than the speed of
its trig function evaluation. */
#ifdef INTRIG
/* The following definitions should keep you from getting intro trouble
with compilers which don't let you redefine intrinsic functions. */
#define sin I_sin
#define cos I_cos
#define tan I_tan
#define sqrt I_sqrt
#define atan I_atan
#define atan2 I_atan2
#define asin I_asin
#define fabs(x) ((x < 0.0) ? -x : x)
#define pic 3.1415926535897932
/* Commonly used constants */
const static double pi = pic,
twopi = pic * 2.0,
piover4 = pic / 4.0,
fouroverpi = 4.0 / pic,
piover2 = pic / 2.0;
/* Coefficients for ATAN evaluation */
const static double atanc[] = {
0.0,
0.4636476090008061165,
0.7853981633974483094,
0.98279372324732906714,
1.1071487177940905022,
1.1902899496825317322,
1.2490457723982544262,
1.2924966677897852673,
1.3258176636680324644
};
/* aint(x) Return integer part of number. Truncates towards 0 */
double aint(double x)
{
long l;
/* Note that this routine cannot handle the full floating point
number range. This function should be in the machine-dependent
floating point library! */
l = x;
if ((int)(-0.5) != 0 && l < 0 ) {
l++;
}
x = l;
return x;
}
/* sin(x) Return sine, x in radians */
static double sin(double x)
{
int sign;
double y, r, z;
x = (((sign= (x < 0.0)) != 0) ? -x: x);
if (x > twopi) {
x -= (aint(x / twopi) * twopi);
}
if (x > pi) {
x -= pi;
sign = !sign;
}
if (x > piover2) {
x = pi - x;
}
if (x < piover4) {
y = x * fouroverpi;
z = y * y;
r = y * (((((((-0.202253129293E-13 * z + 0.69481520350522E-11) * z -
0.17572474176170806E-8) * z + 0.313361688917325348E-6) * z -
0.365762041821464001E-4) * z + 0.249039457019271628E-2) * z -
0.0807455121882807815) * z + 0.785398163397448310);
} else {
y = (piover2 - x) * fouroverpi;
z = y * y;
r = ((((((-0.38577620372E-12 * z + 0.11500497024263E-9) * z -
0.2461136382637005E-7) * z + 0.359086044588581953E-5) * z -
0.325991886926687550E-3) * z + 0.0158543442438154109) * z -
0.308425137534042452) * z + 1.0;
}
return sign ? -r : r;
}
/* cos(x) Return cosine, x in radians, by identity */
static double cos(double x)
{
x = (x < 0.0) ? -x : x;
if (x > twopi) { /* Do range reduction here to limit */
x = x - (aint(x / twopi) * twopi); /* roundoff on add of PI/2 */
}
return sin(x + piover2);
}
/* tan(x) Return tangent, x in radians, by identity */
static double tan(double x)
{
return sin(x) / cos(x);
}
/* sqrt(x) Return square root. Initial guess, then Newton-
Raphson refinement */
double sqrt(double x)
{
double c, cl, y;
int n;
if (x == 0.0) {
return 0.0;
}
if (x < 0.0) {
fprintf(stderr,
"\nGood work! You tried to take the square root of %g",
x);
fprintf(stderr,
"\nunfortunately, that is too complex for me to handle.\n");
exit(1);
}
y = (0.154116 + 1.893872 * x) / (1.0 + 1.047988 * x);
c = (y - x / y) / 2.0;
cl = 0.0;
for (n = 50; c != cl && n--;) {
y = y - c;
cl = c;
c = (y - x / y) / 2.0;
}
return y;
}
/* atan(x) Return arctangent in radians,
range -pi/2 to pi/2 */
static double atan(double x)
{
int sign, l, y;
double a, b, z;
x = (((sign = (x < 0.0)) != 0) ? -x : x);
l = 0;
if (x >= 4.0) {
l = -1;
x = 1.0 / x;
y = 0;
goto atl;
} else {
if (x < 0.25) {
y = 0;
goto atl;
}
}
y = aint(x / 0.5);
z = y * 0.5;
x = (x - z) / (x * z + 1);
atl:
z = x * x;
b = ((((893025.0 * z + 49116375.0) * z + 425675250.0) * z +
1277025750.0) * z + 1550674125.0) * z + 654729075.0;
a = (((13852575.0 * z + 216602100.0) * z + 891080190.0) * z +
1332431100.0) * z + 654729075.0;
a = (a / b) * x + atanc[y];
if (l) {
a = piover2 - a;
}
return sign ? -a : a;
}
/* atan2(y,x) Return arctangent in radians of y/x,
range -pi to pi */
static double atan2(double y, double x)
{
double temp;
if (x == 0.0) {
if (y == 0.0) { /* Special case: atan2(0,0) = 0 */
return 0.0;
} else {
if (y > 0) {
return piover2;
} else {
return -piover2;
}
}
}
temp = atan(y / x);
if (x < 0.0) {
if (y >= 0.0) {
temp += pic;
} else {
temp -= pic;
}
}
return temp;
}
/* asin(x) Return arcsine in radians of x */
static double asin(double x)
{
if (fabs(x) > 1.0) {
fprintf(stderr,
"\nInverse trig functions lose much of their gloss when");
fprintf(stderr,
"\ntheir arguments are greater than 1, such as the");
fprintf(stderr,
"\nvalue %g you passed.\n", x);
exit(1);
}
return atan2(x, sqrt(1 - x * x));
}
#endif
/* Calculate passage through surface
If the variable PARAXIAL is true, the trace through the
surface will be done using the paraxial approximations.
Otherwise, the normal trigonometric trace will be done.
This routine takes the following inputs:
RADIUS_OF_CURVATURE Radius of curvature of surface
being crossed. If 0, surface is
plane.
OBJECT_DISTANCE Distance of object focus from
lens vertex. If 0, incoming
rays are parallel and
the following must be specified:
RAY_HEIGHT Height of ray from axis. Only
relevant if OBJECT.DISTANCE == 0
AXIS_SLOPE_ANGLE Angle incoming ray makes with axis
at intercept
FROM_INDEX Refractive index of medium being left
TO_INDEX Refractive index of medium being
entered.
The outputs are the following variables:
OBJECT_DISTANCE Distance from vertex to object focus
after refraction.
AXIS_SLOPE_ANGLE Angle incoming ray makes with axis
at intercept after refraction.
*/
static void transit_surface(void) {
double iang, /* Incidence angle */
rang, /* Refraction angle */
iang_sin, /* Incidence angle sin */
rang_sin, /* Refraction angle sin */
old_axis_slope_angle, sagitta;
if (paraxial) {
if (radius_of_curvature != 0.0) {
if (object_distance == 0.0) {
axis_slope_angle = 0.0;
iang_sin = ray_height / radius_of_curvature;
} else {
iang_sin = ((object_distance -
radius_of_curvature) / radius_of_curvature) *
axis_slope_angle;
}
rang_sin = (from_index / to_index) *
iang_sin;
old_axis_slope_angle = axis_slope_angle;
axis_slope_angle = axis_slope_angle +
iang_sin - rang_sin;
if (object_distance != 0.0) {
ray_height = object_distance * old_axis_slope_angle;
}
object_distance = ray_height / axis_slope_angle;
return;
}
object_distance = object_distance * (to_index / from_index);
axis_slope_angle = axis_slope_angle * (from_index / to_index);
return;
}
if (radius_of_curvature != 0.0) {
if (object_distance == 0.0) {
axis_slope_angle = 0.0;
iang_sin = ray_height / radius_of_curvature;
} else {
iang_sin = ((object_distance -
radius_of_curvature) / radius_of_curvature) *
sin(axis_slope_angle);
}
iang = asin(iang_sin);
rang_sin = (from_index / to_index) *
iang_sin;
old_axis_slope_angle = axis_slope_angle;
axis_slope_angle = axis_slope_angle +
iang - asin(rang_sin);
sagitta = sin((old_axis_slope_angle + iang) / 2.0);
sagitta = 2.0 * radius_of_curvature*sagitta*sagitta;
object_distance = ((radius_of_curvature * sin(
old_axis_slope_angle + iang)) *
cot(axis_slope_angle)) + sagitta;
return;
}
rang = -asin((from_index / to_index) *
sin(axis_slope_angle));
object_distance = object_distance * ((to_index *
cos(-rang)) / (from_index *
cos(axis_slope_angle)));
axis_slope_angle = -rang;
}
/* Perform ray trace in specific spectral line */
static void trace_line(int line, double ray_h)
{
int i;
object_distance = 0.0;
ray_height = ray_h;
from_index = 1.0;
for (i = 1; i <= current_surfaces; i++) {
radius_of_curvature = s[i][1];
to_index = s[i][2];
if (to_index > 1.0) {
to_index = to_index + ((spectral_line[4] -
spectral_line[line]) /
(spectral_line[3] - spectral_line[6])) * ((s[i][2] - 1.0) /
s[i][3]);
}
transit_surface();
from_index = to_index;
if (i < current_surfaces) {
object_distance = object_distance - s[i][4];
}
}
}
/* Initialise when called the first time */
int run_benchmark()
{
int i, j;
double od_fline, od_cline;
char *gcc_warning_martinet;
spectral_line[1] = 7621.0; /* A */
spectral_line[2] = 6869.955; /* B */
spectral_line[3] = 6562.816; /* C */
spectral_line[4] = 5895.944; /* D */
spectral_line[5] = 5269.557; /* E */
spectral_line[6] = 4861.344; /* F */
spectral_line[7] = 4340.477; /* G'*/
spectral_line[8] = 3968.494; /* H */
/* Load test case into working array */
clear_aperture = 4.0;
current_surfaces = 4;
for (i = 0; i < current_surfaces; i++) {
for (j = 0; j < 4; j++) {
s[i + 1][j + 1] = testcase[i][j];
}
}
printf(F("Ready to begin John Walker's floating point accuracy\n"));
printf(F("and performance benchmark. %d iterations will be made.\n\n"),
niter);
printf(F("\nMeasured run time in seconds should be divided by ")); Serial.println( niter / 1000.0);
printf(F("to normalise for reporting results. For archival results,\n"));
printf(F("adjust iteration count so the benchmark runs about five minutes.\n\n"));
uint32_t t0, t1;
t0 = millis();
/* Perform ray trace the specified number of times. */
for (itercount = 0; itercount < niter; itercount++) {
for (paraxial = 0; paraxial <= 1; paraxial++) {
/* Do main trace in D light */
trace_line(4, clear_aperture / 2.0);
od_sa[paraxial][0] = object_distance;
od_sa[paraxial][1] = axis_slope_angle;
}
paraxial = FALSE;
/* Trace marginal ray in C */
trace_line(3, clear_aperture / 2.0);
od_cline = object_distance;
/* Trace marginal ray in F */
trace_line(6, clear_aperture / 2.0);
od_fline = object_distance;
aberr_lspher = od_sa[1][0] - od_sa[0][0];
aberr_osc = 1.0 - (od_sa[1][0] * od_sa[1][1]) /
(sin(od_sa[0][1]) * od_sa[0][0]);
aberr_lchrom = od_fline - od_cline;
max_lspher = sin(od_sa[0][1]);
/* D light */
max_lspher = 0.0000926 / (max_lspher * max_lspher);
max_osc = 0.0025;
max_lchrom = max_lspher;
}
t1 = millis();
printf(F("Timing: %d ms \n"), t1 - t0 );
/* Now evaluate the accuracy of the results from the last ray trace */
printf(F("%15s "), "Marginal ray");
Serial.print( od_sa[0][0], 11 );
Serial.print(F(" "));
Serial.println( od_sa[0][1], 11 );
printf(F("%15s "), "Paraxial ray");
Serial.print( od_sa[1][0], 11 );
Serial.print(F(" "));
Serial.println( od_sa[1][1], 11 );
printf(F("Longitudinal spherical aberration: ")); Serial.println( aberr_lspher, 11 );
printf(F(" (Maximum permissible): ")); Serial.println( max_lspher, 11 );
printf(F("Offense against sine condition (coma): ")); Serial.println( aberr_osc, 11 );
printf(F(" (Maximum permissible): ")); Serial.println( max_osc, 11 );
printf(F("Axial chromatic aberration: ")); Serial.println( aberr_lchrom, 11 );
printf(F(" (Maximum permissible): ")); Serial.println( max_lchrom, 11 );
return 0;
}
void setup()
{
Serial.begin(9600);
while( !Serial );
run_benchmark();
}
void loop()
{
}