Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ... n.
Example:
Input: 3
Output:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
Explanation:
The above output corresponds to the 5 unique BST's shown below:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
Pick a number i
for root node.
Numbers [1, i - 1]
should be put on the left sub-tree, while [i + 1, N]
on the right.
Both of them are sub-problems. We can simply repeat this process.
// OJ: https://leetcode.com/problems/unique-binary-search-trees-ii/
// Author: github.com/lzl124631x
// Time: O(N*C(N)) where C(N) is Catalan Number which equals
// the count of unique BST. For each tree we visit each node once.
// Space: O(C(N)) because the intermediate `lefts` and `rights` vectors.
// The actual nodes and the returned vector are not counted as consumptions.
class Solution {
private:
vector<TreeNode*> generateTrees(int first, int last) {
if (first > last) return { NULL };
vector<TreeNode*> v;
for (int i = first; i <= last; ++i) {
auto lefts = generateTrees(first, i - 1);
auto rights = generateTrees(i + 1, last);
for (auto left : lefts) {
for (auto right : rights) {
v.push_back(new TreeNode(i));
v.back()->left = left;
v.back()->right = right;
}
}
}
return v;
}
public:
vector<TreeNode*> generateTrees(int n) {
if (n <= 0) return {};
return generateTrees(1, n);
}
};