Given a circular array C of integers represented by A
, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i]
when 0 <= i < A.length
, and C[i+A.length] = C[i]
when i >= 0
.)
Also, a subarray may only include each element of the fixed buffer A
at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j]
, there does not exist i <= k1, k2 <= j
with k1 % A.length = k2 % A.length
.)
Example 1:
Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
Related Topics:
Array
// OJ: https://leetcode.com/problems/maximum-sum-circular-subarray/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
class Solution {
public:
int maxSubarraySumCircular(vector<int>& A) {
int N = A.size(), sum = 0, ans = INT_MIN;
vector<int> p(2 * N + 1);
for (int i = 0; i < 2 * N; ++i) {
p[i + 1] = (sum += A[i % N]);
}
deque<int> q;
for (int i = 0; i < 2 * N + 1; ++i) {
if (i >= N && q.front() == i - N - 1) q.pop_front();
if (q.size()) ans = max(ans, p[i] - p[q.front()]);
while (q.size() && p[q.back()] >= p[i]) q.pop_back();
q.push_back(i);
}
return ans;
}
};