Given a string S, find the number of different non-empty palindromic subsequences in S, and return that number modulo 10^9 + 7
.
A subsequence of a string S is obtained by deleting 0 or more characters from S.
A sequence is palindromic if it is equal to the sequence reversed.
Two sequences A_1, A_2, ...
and B_1, B_2, ...
are different if there is some i
for which A_i != B_i
.
Example 1:
Input: S = 'bccb' Output: 6 Explanation: The 6 different non-empty palindromic subsequences are 'b', 'c', 'bb', 'cc', 'bcb', 'bccb'. Note that 'bcb' is counted only once, even though it occurs twice.
Example 2:
Input: S = 'abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba' Output: 104860361 Explanation: There are 3104860382 different non-empty palindromic subsequences, which is 104860361 modulo 10^9 + 7.
Note:
S
will be in the range [1, 1000]
.S[i]
will be in the set {'a', 'b', 'c', 'd'}
.Related Topics:
String, Dynamic Programming
Similar Questions:
First consider the case where we count duplicates as well.
Let dp[i][j]
be the number of palindromic subsequences in S[i..j]
.
dp[i][j] = 0 if i > j
dp[i][i] = 1
If S[i] != S[j]
:
dp[i][j] = dp[i + 1][j] + dp[i][j - 1] - dp[i + 1][j - 1]
We need to - dp[i + 1][j - 1]
because the palindromic subsequences are counted twice already in dp[i + 1][j]
and dp[i][j - 1]
.
If S[i] == S[j]
, then there are additional dp[i + 1][j - 1] + 1
cases where are the palindromic subsequences in S[(i+1)..(j-1)]
wrapped with S[i]
and S[j]
, plus one case S[i]S[j]
.
dp[i][j] = dp[i + 1][j] + dp[i][j - 1] - dp[i + 1][j - 1] + (dp[i + 1][j - 1] + 1)
= dp[i + 1][j] + dp[i][j - 1] + 1
So in sum, dp[i][j] =
:
- 0, if
i > j
- 1, if
i == j
dp[i + 1][j] + dp[i][j - 1] - dp[i + 1][j - 1]
, ifS[i] != S[j]
dp[i + 1][j] + dp[i][j - 1] + 1
, ifS[i] == S[j]
Now consider distinct count.
dp[i][j][k]
is the number of distinct palindromic subsequences in S[i..j]
bordered by 'a' + k
.
If S[i] != S[j]
:
dp[i][j][k] = dp[i+1][j][k] + dp[i][j-1][k] - dp[i+1][j-1][k]
If S[i] == S[j] && S[i] == 'a' + k
:
dp[i][j][k] = 2 + sum( dp[i+1][j-1][t] | 0 <= t < 4 )
This is because we can wrap all the cases of dp[i+1][j-1][t]
with S[i]
and S[j]
to form new palindromes (which won't contain a
and aa
), and the +2
means a
and aa
.
So in sum, dp[i][j][k] =
:
- 0, if
i > j
ori == j && S[i] != 'a' + k
- 1, if
i == j && S[i] == 'a' + k
dp[i+1][j][k] + dp[i][j-1][k] - dp[i+1][j-1][k]
, ifS[i] != S[j]
2 + sum( dp[i+1][j-1][t] | 0 <= t < 4 )
, ifS[i] == S[j] && S[i] == 'a' + k
// OJ: https://leetcode.com/problems/count-different-palindromic-subsequences/
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(N^2)
// Ref: https://leetcode.com/problems/count-different-palindromic-subsequences/discuss/272297/DP-C%2B%2B-Clear-solution-explained
int memo[1001][1001][4];
class Solution {
int mod = 1e9 + 7;
string s;
int dp(int first, int last, int ch) {
if (first > last) return 0;
if (first == last) return s[first] - 'a' == ch;
if (memo[first][last][ch] != -1) return memo[first][last][ch];
int ans = 0;
if (s[first] == s[last] && s[first] - 'a' == ch) {
ans = 2;
for (int i = 0; i < 4; ++i) ans = (ans + dp(first + 1, last - 1, i)) % mod;
} else {
ans = (ans + dp(first, last - 1, ch)) % mod;
ans = (ans + dp(first + 1, last, ch)) % mod;
ans = (ans - dp(first + 1, last - 1, ch)) % mod;
if (ans < 0) ans += mod;
}
return memo[first][last][ch] = ans;
}
public:
int countPalindromicSubsequences(string S) {
s = S;
memset(memo, -1, sizeof(memo));
int ans = 0;
for (int i = 0; i < 4; ++i) ans = (ans + dp(0, S.size() - 1, i)) % mod;
return ans;
}
};