Skip to content

Latest commit

 

History

History
132 lines (110 loc) · 3.87 KB

README.md

File metadata and controls

132 lines (110 loc) · 3.87 KB

Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l) there are such that A[i] + B[j] + C[k] + D[l] is zero.

To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.

Example:

Input:
A = [ 1, 2]
B = [-2,-1]
C = [-1, 2]
D = [ 0, 2]

Output:
2

Explanation:
The two tuples are:
1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0

 

Related Topics:
Hash Table, Binary Search

Similar Questions:

Solution 1. Map + Bi-directional Search

Use map to store the counts of different sums in AB and CD. Use two pointers one from smallest in AB going to greater values, and the other one from greatest in CD to smaller values. Whenever found a pair summing to 0, add count1 * count2 to the result.

Time complexity

The sum function iterates through O(N^2) pairs and accessing the map at most take O(log(N^2))=O(logN) time. So the sum takes O(N^2 * logN) time.

Each map has O(N^2) data in the worst case and the bi-directional search only traverse each map once at most, so the searching takes O(N^2) time.

So, overall it takes O(N^2 * logN) time.

// OJ: https://leetcode.com/problems/4sum-ii
// Author: github.com/lzl124631x
// Time: O(N^2 * logN)
// Space: O(N^2)
class Solution {
private:
    void sum(vector<int> &A, vector<int> &B, map<int, int> &m) {
        for (auto a : A) {
            for (auto b : B) m[a + b]++;
        }
    }
public:
    int fourSumCount(vector<int>& A, vector<int>& B, vector<int>& C, vector<int>& D) {
        map<int, int> a, b;
        sum(A, B, a);
        sum(C, D, b);
        auto i = a.begin();
        auto j = b.rbegin();
        int ans = 0;
        while (i != a.end() && j != b.rend()) {
            if (i->first + j->first == 0) {
                ans += i->second * j->second;
                ++i;
                ++j;
            } else if (i->first + j->first < 0) ++i;
            else ++j;
        }
        return ans;
    }
};

Solution 2. Two unordered_map

Similar to Solution 1, but use unordered_map instead. Loop through one of it, and find if the counterpart exists.

// OJ: https://leetcode.com/problems/4sum-ii
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(N^2)
class Solution {
public:
    int fourSumCount(vector<int>& A, vector<int>& B, vector<int>& C, vector<int>& D) {
        if (A.empty()) return 0;
        int N = A.size(), cnt = 0;
        unordered_map<int, int> AB, CD;
        for (int i = 0; i < N; ++i) {
            for (int j = 0; j < N; ++j) {
                AB[A[i] + B[j]]++;
                CD[C[i] + D[j]]++; 
            }
        }
        for (auto it = AB.begin(); it != AB.end(); ++it) {
            cnt += it->second * CD[-it->first];
        }
        return cnt;
    }
};

Solution 3. One unordered_map

// OJ: https://leetcode.com/problems/4sum-ii
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(N^2)
class Solution {
public:
    int fourSumCount(vector<int>& A, vector<int>& B, vector<int>& C, vector<int>& D) {
        unordered_map<int, int> m;
        for (auto a : A) {
            for (auto b : B) m[a + b]++;
        }
        int cnt = 0;
        for (auto c : C) {
            for (auto d : D) {
                if (m.find(-c - d) != m.end()) {
                    cnt += m[-c - d];
                }
            }
        }
        return cnt;
    }
};