Skip to content

Latest commit

 

History

History
174 lines (143 loc) · 4.62 KB

README.md

File metadata and controls

174 lines (143 loc) · 4.62 KB

Given a positive integer n, break it into the sum of at least two positive integers and maximize the product of those integers. Return the maximum product you can get.

Example 1:

Input: 2
Output: 1
Explanation: 2 = 1 + 1, 1 × 1 = 1.

Example 2:

Input: 10
Output: 36
Explanation: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36.

Note: You may assume that n is not less than 2 and not larger than 58.

Companies:
Google, Tencent

Related Topics:
Math, Dynamic Programming

Solution 1.

Assume the result is F(n). We can try different partition of n, from 1, n-1, 2, n-2 to ceil(sqrt(n)), n - ceil(sqrt(n)).

// OJ: https://leetcode.com/problems/integer-break/
// Author: github.com/lzl124631x
// Time: O(N * sqrt(N))
// Space: O(N)
class Solution {
public:
    int integerBreak(int n) {
        vector<int> memo(59, 0);
        memo[1] = 1;
        for (int i = 2; i <= n; ++i) 
            for (int j = 1, b = ceil(sqrt(i)); j <= b; ++j)
                memo[i] = max(memo[i], max(j, memo[j]) * max(i - j, memo[i - j]));
        return memo[n];
    }
};

Solution 2.

Try to find pattern.

F(2) = 1
F(3) = 1*2 = 2
F(4) = 2*2 = 4
F(5) = 2*3 = 6
F(6) = 3*3 = 9
F(7) = 2*2*3 = 12 = F(4) * 3
F(8) = 2*3*3 = 18 = F(5) * 3
F(9) = 3*3*3 = 27 = F(6) * 3
F(10) = 2*2*3*3 = 36 = F(7) * 3
...

2 and 3 are the only two factors used.

4 is not used since we can use 2*2 instead.

5 is not used since if we split 5 into 2, 3 we can get larger result.

And so on.

Since number 5, we can always factor out 3 first.

So we can compute from F(5) to F(n) using F(i) = 3 * max(i - 3, F(i - 3)).

// OJ: https://leetcode.com/problems/integer-break/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
class Solution {
public:
    int integerBreak(int n) {
        int dp[max(n + 1, 5)];
        dp[0] = 0;
        dp[1] = 1;
        dp[2] = 1;
        dp[3] = 2;
        dp[4] = 4;
        for (int i = 5; i <= n; ++i)
            dp[i] = 3 * max(i - 3, dp[i - 3]);
        return dp[n];
    }
};

What's the math behind it?

Reference: https://discuss.leetcode.com/topic/43055/why-factor-2-or-3-the-math-behind-this-problem/11

@StefanPochmann:
If an optimal product contains a factor f >= 4, then you can replace it with factors 2 and f-2 without losing optimality, as 2*(f-2) = 2f-4 >= f. So you never need a factor greater than or equal to 4, meaning you only need factors 1, 2 and 3 (and 1 is of course wasteful and you'd only use it for n=2 and n=3, where it's needed).
3*3 is simply better than 2*2*2, so you'd never use 2 more than twice.

Solution 3.

// OJ: https://leetcode.com/problems/integer-break/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
class Solution {
public:
    int integerBreak(int n) {
        if (n == 2) return 1;
        if (n == 3) return 2;
        if (n == 4) return 4;
        return 3 * max(n - 3, integerBreak(n - 3));
    }
};

How to omit max?

6 = 3 + 3 and f(3) = 2 so 6 needs max

7 = 3 + 4 and f(4) = 4 so 7 is the first number that doesn't need max

So another version:

// OJ: https://leetcode.com/problems/integer-break/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
// Ref: https://discuss.leetcode.com/topic/43042/easy-to-understand-c-with-explanation
class Solution {
public:
    int integerBreak(int n) {
        if (n == 2) return 1;
        if (n == 3) return 2;
        if (n == 4) return 4;
        if (n == 5) return 6;
        if (n == 6) return 9;
        return 3 * integerBreak(n - 3);
    }
};

Solution 4.

// OJ: https://leetcode.com/problems/integer-break/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
// Ref: https://discuss.leetcode.com/topic/45341/a-simple-explanation-of-the-math-part-and-a-o-n-solution
class Solution {
public:
    int integerBreak(int n) {
        if (n == 2) return 1;
        if (n == 3) return 2;
        int p = 1;
        while (n > 4) {
            p *= 3;
            n -= 3;
        }
        p *= n;
        return p;
    }
};