Alice and Bob take turns playing a game, with Alice starting first.
Initially, there are n
stones in a pile. On each player's turn, that player makes a move consisting of removing any non-zero square number of stones in the pile.
Also, if a player cannot make a move, he/she loses the game.
Given a positive integer n
. Return True
if and only if Alice wins the game otherwise return False
, assuming both players play optimally.
Example 1:
Input: n = 1 Output: true Explanation: Alice can remove 1 stone winning the game because Bob doesn't have any moves.
Example 2:
Input: n = 2 Output: false Explanation: Alice can only remove 1 stone, after that Bob removes the last one winning the game (2 -> 1 -> 0).
Example 3:
Input: n = 4 Output: true Explanation: n is already a perfect square, Alice can win with one move, removing 4 stones (4 -> 0).
Example 4:
Input: n = 7 Output: false Explanation: Alice can't win the game if Bob plays optimally. If Alice starts removing 4 stones, Bob will remove 1 stone then Alice should remove only 1 stone and finally Bob removes the last one (7 -> 3 -> 2 -> 1 -> 0). If Alice starts removing 1 stone, Bob will remove 4 stones then Alice only can remove 1 stone and finally Bob removes the last one (7 -> 6 -> 2 -> 1 -> 0).
Example 5:
Input: n = 17 Output: false Explanation: Alice can't win the game if Bob plays optimally.
Constraints:
1 <= n <= 10^5
Related Topics:
Dynamic Programming
Let dp[i]
be whether Alice and win starting with i
stones.
dp[i] = true // If any dp[i - j * j] is false
= false // otherwise
where 1 <= j * j <= i -- the stone taken by Bob.
// OJ: https://leetcode.com/problems/stone-game-iv/
// Author: github.com/lzl124631x
// Time: O(N * sqrt(N))
// Space: O(N)
class Solution {
public:
bool winnerSquareGame(int n) {
vector<bool> dp(n + 1);
for (int i = 1; i <= n; ++i) {
for (int j = 1; j * j <= i && !dp[i]; ++j) dp[i] = !dp[i - j * j];
}
return dp[n];
}
};
Or use static
variable to save computation
// OJ: https://leetcode.com/problems/stone-game-iv/
// Author: github.com/lzl124631x
// Time: O(N * sqrt(N))
// Space: O(N)
class Solution {
public:
bool winnerSquareGame(int n) {
static vector<bool> dp(1);
for (int i = dp.size(); i <= n; ++i) {
dp.push_back(false);
for (int j = 1; j * j <= i && !dp[i]; ++j) dp[i] = !dp[i - j * j];
}
return dp[n];
}
};
// OJ: https://leetcode.com/problems/stone-game-iv/
// Author: github.com/lzl124631x
// Time: O(N * sqrt(N))
// Space: O(N)
class Solution {
vector<int> dp; // -1 unvisited, 0 lose, 1 win
bool dfs(int n) {
if (n == 0) return false;
if (dp[n] != -1) return dp[n];
for (int i = 1; i * i <= n && dp[n] != 1; ++i) dp[n] = !dfs(n - i * i);
return dp[n];
}
public:
bool winnerSquareGame(int n) {
dp.assign(n + 1, -1);
return dfs(n);
}
};