Skip to content

Latest commit

 

History

History
182 lines (153 loc) · 6.74 KB

File metadata and controls

182 lines (153 loc) · 6.74 KB

Given an array of integers arr and an integer k.

A value arr[i] is said to be stronger than a value arr[j] if |arr[i] - m| > |arr[j] - m| where m is the median of the array.
If |arr[i] - m| == |arr[j] - m|, then arr[i] is said to be stronger than arr[j] if arr[i] > arr[j].

Return a list of the strongest k values in the array. return the answer in any arbitrary order.

Median is the middle value in an ordered integer list. More formally, if the length of the list is n, the median is the element in position ((n - 1) / 2) in the sorted list (0-indexed).

  • For arr = [6, -3, 7, 2, 11]n = 5 and the median is obtained by sorting the array arr = [-3, 2, 6, 7, 11] and the median is arr[m] where m = ((5 - 1) / 2) = 2. The median is 6.
  • For arr = [-7, 22, 17, 3]n = 4 and the median is obtained by sorting the array arr = [-7, 3, 17, 22] and the median is arr[m] where m = ((4 - 1) / 2) = 1. The median is 3.

 

Example 1:

Input: arr = [1,2,3,4,5], k = 2
Output: [5,1]
Explanation: Median is 3, the elements of the array sorted by the strongest are [5,1,4,2,3]. The strongest 2 elements are [5, 1]. [1, 5] is also accepted answer.
Please note that although |5 - 3| == |1 - 3| but 5 is stronger than 1 because 5 > 1.

Example 2:

Input: arr = [1,1,3,5,5], k = 2
Output: [5,5]
Explanation: Median is 3, the elements of the array sorted by the strongest are [5,5,1,1,3]. The strongest 2 elements are [5, 5].

Example 3:

Input: arr = [6,7,11,7,6,8], k = 5
Output: [11,8,6,6,7]
Explanation: Median is 7, the elements of the array sorted by the strongest are [11,8,6,6,7,7].
Any permutation of [11,8,6,6,7] is accepted.

Example 4:

Input: arr = [6,-3,7,2,11], k = 3
Output: [-3,11,2]

Example 5:

Input: arr = [-7,22,17,3], k = 2
Output: [22,17]

 

Constraints:

  • 1 <= arr.length <= 10^5
  • -10^5 <= arr[i] <= 10^5
  • 1 <= k <= arr.length

Related Topics:
Array, Sort

Solution 1. Brute Force

// OJ: https://leetcode.com/problems/the-k-strongest-values-in-an-array/
// Author: github.com/lzl124631x
// Time: O(NlogN)
// Space: O(1)
class Solution {
public:
    vector<int> getStrongest(vector<int>& A, int k) {
        sort(A.begin(), A.end());
        int m = A[(A.size() - 1) / 2];
        sort(A.begin(), A.end(), [&](int &a, int &b) {
            return abs(a - m) == abs(b - m) ? a > b : (abs(a - m) > abs(b - m));
        });
        vector<int> ans(A.begin(), A.begin() + k);
        return ans;
    }
};

Solution 2. Two pointers

// OJ: https://leetcode.com/problems/the-k-strongest-values-in-an-array/
// Author: github.com/lzl124631x
// Time: O(NlogN)
// Space: O(1)
// Ref: https://leetcode.com/problems/the-k-strongest-values-in-an-array/discuss/674384/C%2B%2BJavaPython-Two-Pointers-%2B-3-Bonuses
class Solution {
public:
    vector<int> getStrongest(vector<int>& A, int k) {
        sort(A.begin(), A.end());
        int m = A[(A.size() - 1) / 2], i = 0, j = A.size() - 1;
        vector<int> ans;
        while (ans.size() < k) {
            if (A[j] - m >= m - A[i]) ans.push_back(A[j--]);
            else ans.push_back(A[i++]);
        }
        return ans;
    }
};

Solution 3. Quick Select

// OJ: https://leetcode.com/problems/the-k-strongest-values-in-an-array/
// Author: github.com/lzl124631x
// Time: O(NlogK)
// Space: O(1)
// Ref: https://leetcode.com/problems/the-k-strongest-values-in-an-array/discuss/674384/C%2B%2BJavaPython-Two-Pointers-%2B-3-Bonuses
class Solution {
public:
    vector<int> getStrongest(vector<int>& A, int k) {
        nth_element(A.begin(), A.begin() + (A.size() - 1) / 2, A.end());
        int m = A[(A.size() - 1) / 2];
        partial_sort(A.begin(), A.begin() + k, A.end(), [&](int a, int b) {
            return abs(a - m) == abs(b - m) ? a > b : abs(a - m) > abs(b - m);
        });
        A.resize(k);
        return A;
    }
};

Solution 4. Heap

  • nth_element is quick select taking O(N).
  • priority_queue initialized with array is make_heap (aka heapify), which is O(N).
  • Pulling from priority queue is O(logN) and we do it k times.
// OJ: https://leetcode.com/problems/the-k-strongest-values-in-an-array/
// Author: github.com/lzl124631x
// Time: O(N + KlogN)
// Space: O(1)
// Ref: https://leetcode.com/problems/the-k-strongest-values-in-an-array/discuss/674384/C%2B%2BJavaPython-Two-Pointers-%2B-3-Bonuses
class Solution {
public:
    vector<int> getStrongest(vector<int>& A, int k) {
        nth_element(A.begin(), A.begin() + (A.size() - 1) / 2, A.end());
        int m = A[(A.size() - 1) / 2];
        auto cmp = [&](int a, int b) {
            return abs(a - m) == abs(b - m) ? a < b : abs(a - m) < abs(b - m); 
        };
        priority_queue<int, vector<int>, decltype(cmp)> q(begin(A), end(A), cmp);
        vector<int> ans;
        while (ans.size() < k) {
            ans.push_back(q.top());
            q.pop();
        }
        return ans;
    }
};

Solution 5. Quick Select

// OJ: https://leetcode.com/problems/the-k-strongest-values-in-an-array/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
// Ref: https://leetcode.com/problems/the-k-strongest-values-in-an-array/discuss/674384/C%2B%2BJavaPython-Two-Pointers-%2B-3-Bonuses
class Solution {
public:
    vector<int> getStrongest(vector<int>& A, int k) {
        nth_element(A.begin(), A.begin() + (A.size() - 1) / 2, A.end());
        int m = A[(A.size() - 1) / 2];
        nth_element(A.begin(), A.begin() + k, A.end(), [&](int a, int b) {
            return abs(a - m) == abs(b - m) ? a > b : abs(a - m) > abs(b - m); 
        });
        A.resize(k);
        return A;
    }
};