Given a binary string s
and an integer k
.
Return True if any binary code of length k
is a substring of s
. Otherwise, return False.
Example 1:
Input: s = "00110110", k = 2 Output: true Explanation: The binary codes of length 2 are "00", "01", "10" and "11". They can be all found as substrings at indicies 0, 1, 3 and 2 respectively.
Example 2:
Input: s = "00110", k = 2 Output: true
Example 3:
Input: s = "0110", k = 1 Output: true Explanation: The binary codes of length 1 are "0" and "1", it is clear that both exist as a substring.
Example 4:
Input: s = "0110", k = 2 Output: false Explanation: The binary code "00" is of length 2 and doesn't exist in the array.
Example 5:
Input: s = "0000000001011100", k = 4 Output: false
Constraints:
1 <= s.length <= 5 * 10^5
s
consists of 0's and 1's only.1 <= k <= 20
Related Topics:
String, Bit Manipulation
We can use a sliding window to keep track of the substring of length k
, and mark the corresponding binary representation n
as visited. Then we check if all the numbers in range [0, 2^k)
are visited.
// OJ: https://leetcode.com/problems/check-if-a-string-contains-all-binary-codes-of-size-k/
// Author: github.com/lzl124631x
// Time: O(N + min(N, 2^K))
// Space: O(2^K)
class Solution {
public:
bool hasAllCodes(string s, int k) {
vector<bool> v(1 << k);
int n = 0, mask = (1 << k) - 1;
for (int i = 0; i < s.size(); ++i) {
n = (n << 1) & mask | (s[i] - '0');
if (i >= k - 1) v[n] = true;
}
for (int i = 0; i < (1 << k); ++i) {
if (!v[i]) return false;
}
return true;
}
};
Same idea as Solution 1, but using unordered_set
to store the visited info and we just need to check the size of the set in the end.
// OJ: https://leetcode.com/problems/check-if-a-string-contains-all-binary-codes-of-size-k/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(2^K)
class Solution {
public:
bool hasAllCodes(string s, int k) {
unordered_set<int> st;
int n = 0, mask = (1 << k) - 1;
for (int i = 0; i < s.size(); ++i) {
n = (n << 1) & mask | (s[i] - '0');
if (i >= k - 1) st.insert(n);
if (st.size() == (1 << k)) return true;
}
return false;
}
};