Given a matrix
, and a target
, return the number of non-empty submatrices that sum to target.
A submatrix x1, y1, x2, y2
is the set of all cells matrix[x][y]
with x1 <= x <= x2
and y1 <= y <= y2
.
Two submatrices (x1, y1, x2, y2)
and (x1', y1', x2', y2')
are different if they have some coordinate that is different: for example, if x1 != x1'
.
Example 1:
Input: matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0 Output: 4 Explanation: The four 1x1 submatrices that only contain 0.
Example 2:
Input: matrix = [[1,-1],[-1,1]], target = 0 Output: 5 Explanation: The two 1x2 submatrices, plus the two 2x1 submatrices, plus the 2x2 submatrix.
Note:
1 <= matrix.length <= 300
1 <= matrix[0].length <= 300
-1000 <= matrix[i] <= 1000
-10^8 <= target <= 10^8
Related Topics:
Array, Dynamic Programming, Sliding Window
Let sum[i][j]
be the sum of all elements in submatrix (0,0)
to (i-1,j-1)
.
For each pair of columns i, j
, sum[k][j] - sum[k][i]
is the sum of all elements in submatrix (0,i)
to (k-1,j-1)
.
We can loop k
from 1
to M
, and use the solution of 560. Subarray Sum Equals K (Medium) to count the submatrixes that starts at column i
and ends at (inclusive) column j-1
and sums to target
.
// OJ: https://leetcode.com/problems/number-of-submatrices-that-sum-to-target/
// Author: github.com/lzl124631x
// Time: O(M * N^2)
// Space: O(MN)
class Solution {
public:
int numSubmatrixSumTarget(vector<vector<int>>& matrix, int target) {
int M = matrix.size(), N = matrix[0].size(), ans = 0;
vector<vector<int>> sum(M + 1, vector<int>(N + 1, 0));
for (int i = 1; i <= M; ++i) {
for (int j = 1; j <= N; ++j) {
sum[i][j] = sum[i][j - 1] + sum[i - 1][j] - sum[i - 1][j - 1] + matrix[i - 1][j - 1];
}
}
for (int i = 0; i < N; ++i) {
for (int j = i + 1; j <= N; ++j) {
unordered_map<int, int> m {{ 0, 1 }};
for (int k = 1; k <= M; ++k) {
int val = sum[k][j] - sum[k][i];
ans += m[val - target];
m[val]++;
}
}
}
return ans;
}
};