forked from rjkyng/agao23_script
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlecture_solvingLaplacians.tex
1269 lines (1183 loc) · 44.7 KB
/
lecture_solvingLaplacians.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% \documentclass[draft,11pt]{article}
\chapter{Solving Laplacian
Linear Equations}
%\allowdisplaybreaks
%%% For this lecture
%\newcommand\symset{S}
%\newcommand\psdset{S_+}
%\newcommand\pdset{S_{++}}
%\newcommand\symsetn{\symset^n}
%\newcommand\psdsetn{\psdset^n}
%\newcommand\pdsetn{\pdset^n}
%\newcommand{\vcliq}[2]{\textsc{Clique}\!\left({#1,#2}\right)}
%\newcommand{\vstar}[2]{\textsc{Star}\!\left({#1,#2}\right)}
%%% added by Hongjie
%\newcommand{\Hongjie}[1]{{\color{red} Hongjie: #1}}
%\newcommand{\vcliqsp}[2]{\textsc{CliqueSample}\!\left({#1,#2}\right)}
%%% layout and code
%\usepackage[vlined, ruled]{algorithm2e}
%\usepackage{float}
%\begin{document}
\sloppy
%\lecture{9 --- Wednesday, April 22nd}
%{Spring 2020}{Rasmus Kyng, Scribe: Hongjie Chen}{Solving Laplacian
% Linear Equations}
% \todo{introduce stopped martingale}
% \todo{remarks, Tropp and Matrix Freedman and things to know}
% \paragraph{outline}
% \begin{itemize}
% \item objective
% \item precond
% \item algo
% \item martingale
% \item mat conc
% \end{itemize}
\section{Solving Linear Equations Approximately}
Given a Laplacian $\LL$ of a connected graph and a demand vector
$\dd \perp \vecone$, we want to find $\xx^*$ solving the linear equation
$\LL \xx^* = \dd$.
We are going to focus on fast algorithms for finding approximate (but
highly accurate) solutions.
This means we need a notion of an approximate solution.
Since our definition is not special to Laplacians, we state it more
generally for positive semi-definite matrices.
\begin{definition}
Given PSD matrix $\MM$ and $\dd \in \ker(\MM)^{\perp}$, let
$\MM \xx^* = \dd$.
We say that $\xxtil$ is an $\epsilon$-approximate solution to the
linear equation $\MM \xx = \dd$ if
\[
\norm{\xxtil - \xx^*}_{\MM}^2 \leq \epsilon \norm{\xx^*}_{\MM}^2.
\]
\end{definition}
\begin{remark}
The requirement $\dd \in \ker(\MM)^{\perp}$ can be removed,
but this is not important for us.
\end{remark}
\begin{theorem}[Spielman and Teng (2004) \cite{st04}]
Given a Laplacian $\LL$ of a weighted undirected graph $G = (V,E,\ww)$
with $\abs{E}=m$ and $\abs{V} = n$ and a demand vector $\dd \in \R^V$,
we can find $\xxtil$ that is an $\epsilon$-approximate solution to
$\LL \xx = \dd$, using an algorithm that takes time
$O(m \log^c n \log(1/\epsilon))$ for some fixed constant $c$ and succeeds with probability $1 - 1/n^{10}$.
\end{theorem}
In the original algorithm of Spielman and Teng, the exponent on the
log in the running time was $c \approx 70$.
Today, we are going to see a simpler algorithm. But first, we'll look
at one of the key tools behind all algorithms for solving Laplacian
linear equations quickly.
\section{Preconditioning and
Approximate Gaussian Elimination}
Recall our definition of two positive semi-definite matrices being
approximately equal.
\begin{definition}[Spectral approximation]
Given $\AA, \BB \in \psdsetn$, we say that
\[
\AA \approx_{K} \BB
\text{ if and only if }
\frac{1}{1+ K} \AA \preceq \BB \preceq (1+ K) \AA.
\]
\end{definition}
Suppose we have a positive definite matrix $\MM \in \pdsetn$ and want to
solve a linear equation $\MM \xx =\dd$.
We can do this using gradient descent or accelerated gradient
descent, as we covered in Graded Homework 1.
But if we have access to an easy-to-invert matrix that happens to also
be a good spectral approximation of $\MM$, then we can use this to
speed up the (accelerated) gradient descent algorithm.
An example of this would be that we have a factorization
$\matlow\matlow^{\trp} \approx_{K} \MM$, where $\matlow$ is
lower triangular and sparse, which means we can invert it quickly.
The following lemma, which you will prove in Problem Set 6, makes this
preconditioning precise.
\begin{lemma}
\label{lem:cholprecond}
Given a matrix $\MM \in \pdsetn$, a vector $\dd$ and a decomposition $\MM
\approx_{K} \matlow\matlow^{\trp}$,
we can find $\xxtil$ that $\epsilon$-approximately solves $\MM \xx =
\dd$, using
$O( (1+ K)\log(K/\epsilon)(T_{\text{matvec}} + T_{\text{sol}} + n) ) $ time.
\begin{itemize}
\item $T_{\text{matvec}}$ denotes the time required to compute $\MM
\zz$ given a vector $\zz$, i.e. a ``matrix-vector multiplication''.
\item $T_{\text{sol}}$ denotes the time required to compute
$\matlow^{-1}\zz$ or $(\matlow^{\trp})^{-1}\zz$ given a vector
$\zz$.
\end{itemize}
\end{lemma}
\paragraph{Dealing with pseudo-inverses.}
When our matrices have a null space, preconditioning becomes slightly
more complicated, but as long as it is easy to project to the
complement of the null space, there's no real issue. The following
describes precisely what we need (but you can ignore the null-space
issue when first reading these notes without losing anything
significant).
\begin{lemma}
\label{lem:cholprecondpinv}
Given a matrix $\MM \in \psdsetn$, a vector $\dd \in \ker(\MM)^{\perp}$ and a decomposition $\MM
\approx_{K} \matlow\calDD\matlow^{\trp}$, where $\matlow$ is invertible,
we can find $\xxtil$ that $\epsilon$-approximately solves $\MM \xx =
\dd$, using
${O( (1+ K)\log(K/\epsilon)(T_{\text{matvec}} + T_{\text{sol}} +
T_{\text{proj}} + n) ) }$ time.
\begin{itemize}
\item $T_{\text{matvec}}$ denotes the time required to compute $\MM
\zz$ given a vector $\zz$, i.e. a ``matrix-vector multiplication''.
\item $T_{\text{sol}}$ denotes the time required to compute
$\matlow^{-1}\zz$ and $(\matlow^{\trp})^{-1}\zz$ and $\calDD^{+}\zz$ given a vector
$\zz$.
\item $T_{\text{proj}}$ denotes the time required to compute
$\proj_{\MM} \zz$ given a vector $\zz$.
\end{itemize}
\end{lemma}
\begin{theorem}[Kyng and Sachdeva (2015) \cite{ks16}]
\label{thm:apxgauss}
Given a Laplacian $\LL$ of a weighted undirected graph $G = (V,E,\ww)$
with $\abs{E}=M$ and $\abs{V} = n$,
we can find a decomposition
$\matlow\matlow^{\trp} \approx_{0.5} \LL $, such that
$\matlow$ has number of non-zeroes $\nnz(\matlow) = O(m \log^3 n)$,
with probability at least $1 - 3/n^{5}$.
in time $O(m \log^3 n)$.
\end{theorem}
We can combine Theorem~\ref{thm:apxgauss} with
Lemma~\ref{lem:cholprecondpinv} to get a fast algorithm for solving
Laplacian linear equations.
% ...
% \begin{corollary}
% Given a decomposition $\matlow\matlow^{\trp} \approx_{0.5} \LL $,
% \end{corollary}
\begin{corollary}
\label{cor:precondsolver}
Given a Laplacian $\LL$ of a weighted undirected graph $G = (V,E,\ww)$
with $\abs{E}=m$ and $\abs{V} = n$ and a demand vector $\dd \in \R^V$,
we can find $\xxtil$ that is an $\epsilon$-approximate solution to
$\LL \xx = \dd$, using an algorithm that takes time $O(m \log^3 n
\log(1/\epsilon))$ and succeeds with probability $1 - 1/n^{10}$.
\end{corollary}
\begin{proof}[Proof sketch]
First we need to get a factorization that confirms to
Lemma~\ref{lem:cholprecondpinv}.
The decomposition $\matlow\matlow^{\trp}$ provided by
Theorem~\ref{thm:apxgauss} can be rewritten as
$\matlow\matlow^{\trp} = \matlowtil \calDD (\matlowtil)^{\trp}$
where
$\matlowtil$ is equal to $\matlow$ except $\matlow(n,n) = 1$
and we let $\calDD$ be the identity matrix, except $\calDD (n,n)
= 0$.
This ensures $\calDD^{\pinv} = \calDD$ and that $\matlowtil$ is
invertible and lower triagular with $O(m \log^3 n)$ non-zeros.
We note that the inverse of an invertible lower or upper triangular
matrix with $N$ non-zeros can be applied in time $O(N)$ given an
adjacency list representation of the matrix.
Finally, as $\ker(\matlow\matlow^{\trp}) = \Span\setof{\vecone}$,
we have $\proj_{ \matlowtil \calDD (\matlowtil)^{\trp}}
= \II -\frac{1}{n} \vecone \vecone^{\trp}$, and this projection matrix can be
applied in $O(n)$ time.
Altogether, this means that $T_{\text{matvec}} + T_{\text{sol}} +
T_{\text{proj}} = O(n)$, which suffices to complete the proof.
\end{proof}
\section{Approximate Gaussian Elimination Algorithm}
Recall \emph{Gaussian Elimination / Cholesky decomposition} of a graph Laplacian $\LL$.
We will use $\AA(:,i)$ to denote the the $i$th
column of a matrix $\AA$.
We can write the algorithm as
% \begin{algorithm}[h]
% \begin{algorithmic}
% \For{$i = 1$ to $i = n-1$}
% \State $\ll_i = \frac{1}{\sqrt{\SS_{i-1}(i,i)}} \SS_{i-1}(:,i)$
% \State $\SS_{i} = \SS_{i-1} - \ll_i \ll_i^{\trp}.$
% \EndFor
% \State $\ll_n = \veczero_{n \times 1}$
% \State $\matlow=\begin{bmatrix} \ll_1 \cdots \ll_n \end{bmatrix}$
% \end{algorithmic}
% \end{algorithm}
\begin{algorithm}[H]
\label{alg:ge}
\caption{Gaussian Elimination / Cholesky Decomposition}
\KwIn{Graph Laplacian $\LL$}
\KwOut{Lower triangular $\matlow$ s.t. $\matlow\matlow^{\trp} = \LL$}
Let $\SS_0 = \LL$ \;
\For{$i = 1$ to $i = n-1$}{
$\ll_i = \frac{1}{\sqrt{\SS_{i-1}(i,i)}} \SS_{i-1}(:,i)$\;
$\SS_{i} = \SS_{i-1} - \ll_i \ll_i^{\trp}.$\
}
$\ll_n = \veczero_{n \times 1}$\;
\Return{$\matlow=\begin{bmatrix} \ll_1 \cdots \ll_n \end{bmatrix}$}\;
\end{algorithm}
% Now, for $i = 1$ to $i = n-1$ we define
% \begin{align*}
% \ll_i &= \frac{1}{\sqrt{\SS_{i-1}(i,i)}} \SS_{i-1}(:,i), \\
% \SS_{i} &= \SS_{i-1} - \ll_i \ll_i^{\trp}.
% \end{align*}
% Finally, we let $\ll_n = \veczero_{n \times 1}$. It follows that
% $\matlow=\begin{bmatrix} \ll_1 \cdots \ll_n \end{bmatrix}$ is lower
% triangular and $\LL=\matlow\matlow^\trp$.
We want to introduce some notation that will help us describe and
analyze a faster version of Gaussian elimination -- one that uses sampling
to create a sparse approximation of the decomposition.
Consider a Laplacian $\SS$ of a graph $H$ and a vertex $v$ of $H$.
We define $\vstar{v}{\SS}$ to be the Laplacian of the subgraph of $H$
consisting of edges incident on $v$.
We define
\[
\vcliq{v}{\SS} = \vstar{v}{\SS} - \frac{1}{\SS(v,v)} \SS(:,v) \SS(:,v)^{\trp}
\]
For example, suppose
\[
\LL =
\left(
\begin{array}{ccc}
W & -\aa^\trp \\
-\aa& \diag(\aa) + \LL_{-1}
\end{array} \right)
\]
Then
\[
\vstar{1}{\LL}
=
\left(
\begin{array}{ccc}
W & -\aa^\trp \\
-\aa& \diag(\aa)
\end{array} \right)
\text{ and }
\vcliq{1}{\LL}
=
\left(
\begin{array}{ccc}
0 & \veczero \\
\veczero & \diag(\aa) - \frac{1}{W} \aa \aa^\trp
\end{array} \right)
\]
which is illustrated in Figure \ref{fig:schurcliqueagain}.
%
\begin{figure}[H]
\centering
\includegraphics[width=1
\textwidth]{fig/lecture7_schur-clique.jpeg}
\caption{Gaussian Elimination:
$\vcliq{1}{\LL} = \vstar{1}{\LL} - \frac{1}{\LL(1,1)} \LL(:,1)
\LL(:,1)^{\trp}$.}
\label{fig:schurcliqueagain}
\end{figure}
In Chapter~\ref{cha:ge}, we proved that $\vcliq{v}{\SS}$ is a graph Laplacian --
it follows from the proof of Claim~\ref{clm:optimgaussclosed} in that chapter.
Thus we have that following.
\begin{claim}
\label{clm:optimgaussclosedagain}
If $\SS$ is the Laplacian of a connected graph, then
$\vcliq{v}{\SS}$ is a graph Laplacian.
% \begin{enumerate}
% \item $\vcliq{v}{\SS}$ is a graph Laplacian.
% \item
% \end{enumerate}
\end{claim}
Note that in Algorithm~\ref{alg:ge}, we have $\ll_i\ll_i^\trp = \vstar{v_i}{\SS_{i-1}}-\vcliq{v_i}{\SS_{i-1}}$. The update rule can be rewritten as
\[ \SS_{i} = \SS_{i-1} - \vstar{v_i}{\SS_{i-1}} +
\vcliq{v_i}{\SS_{i-1}}, \]
This also provides way to understand why
Gaussian Elimination is slow in some cases.
At each step, one vertex is eliminated, but a clique is added to the
subgraph on the remaining vertices, making the graph denser.
And at the $i$th step, computing $\vstar{v_i}{\SS_{i-1}}$
takes around $\deg(v_i)$ time, but computing $\vcliq{v_i}{\SS_{i-1}}$
requires around $\deg(v_i)^2$ time.
In order to speed up Gaussian
Elimination, the algorithmic idea of \cite{ks16}
%\cite{?}
is to plug in a sparser appproximate of the intended clique instead
of the entire one.
The following procedure $\vcliqsp{v}{\SS}$ produces a sparse
approximation of $\textsc{clique}(v,\SS)$.
Let $V$ be the vertex set of the graph associated with $\SS$ and $E$
the edge set.
We define $\bb_{i,j} \in \R^V$ to be the vector with
\[
\bb_{i,j}(i) = 1
\text{ and }
\bb_{i,j}(j) = -1
\text{ and }
\bb_{i,j}(k) = 0
\text{ for }
k \neq i,j.
\]
Given weights $\ww \in \R^E$ and a vertex $v \in V$,
we let
\[
\ww_v = \sum_{(u,v) \in E} \ww(u,v)
.
\]
\begin{algorithm}[H]
\label{alg:cliquesamp}
\caption{$\vcliqsp{v}{\SS}$}
\KwIn{Graph Laplacian $\SS \in \R^{V \times V}$, of a graph with edge
weights $\ww$, and vertex $v \in V$}
\KwOut{$\YY_v \in \R^{V \times V}$ sparse approximation of
$\textsc{clique}(v,\SS)$ }
$\YY_v \gets \matzero_{n \times n} $\;
\ForEach{Multiedge $e
= (v,i)$ from $v$ to a neighbor $i$}{
Randomly pick a neighbor $j$ of $v$ with probability $\frac{\ww(j,v)}{\ww_v}$\;
If $i \neq j$, let $\YY_v \gets \YY_v + \frac{\ww(i,v)\ww(j,v)}{\ww(i,v)+\ww(j,v)} \bb_{i,j}\bb_{i,j}^\trp$\;
}
\Return{$\YY_v$}\;
\end{algorithm}
% Let $\YY_v = \matzero_{n \times n}$. For each neighbor $i$ of $v$, randomly pick a neighbor $j$ of $v$ with probability $\frac{\ww(j,v)}{\ww_v}$ where $\ww_v = \sum_{u \sim v} \ww(u,v)$ is the sum of weights of edges incident to $v$. If $i\neq j$, then draw an edge with weight $\ww(i,v)\ww(j,v)/(\ww(i,v)+\ww(j,v))$ between $i$ and $j$, i.e. update $\YY_v$ by
% \[ \YY_v \gets \YY_v + \frac{\ww(i,v)\ww(j,v)}{\ww(i,v)+\ww(j,v)} \bb_{i,j}\bb_{i,j}^\trp. \]
%
\begin{remark}
We can implement each sampling of a neighbor $j$ in $O(1)$ time
using a classical algorithm known as Walker's method (also known as the Alias
method or Vose's method).
This algorithm requires an additional $O(\deg_{\SS}(v))$ time to
initialize a data structure used for sampling.
Overall, this means the total time for $O(\deg_{\SS}(v))$ samples is still $O(\deg_{\SS}(v))$.
\end{remark}
% %TODO this paragraph sometimes causes horizontal "badness" failure
% In what sense does $\vcliqsp{v}{\SS}$ produce a sparse approximation
% of the clique $\vcliq{v}{\SS}$ created by Gaussian elimination?
% This is a crucial question, and the next lemma gives part of the
% answer: Namely that the output in expectation equals the clique.
\begin{lemma}\label{lem:cliquesample_expectation}
$\E{\YY_v} = \vcliq{v}{\SS}$.
\end{lemma}
\begin{proof}
Let $\CC=\vcliq{v}{\SS}$. Observe that both $\E{\YY_v}$ and $\CC$ are Laplacians. Thus it suffices to verify $\Ex{\YY_v(i,j)}=\CC(i,j)$ for $i\neq j$.
\[ \CC(i,j) = -\frac{\ww(i,v)\ww(j,v)}{\ww_v}, \]
\[ \Ex{\YY_v(i,j)} = -\frac{\ww(i,v)\ww(j,v)}{\ww(i,v)+\ww(j,v)} \left( \frac{\ww(j,v)}{\ww_v} + \frac{\ww(i,v)}{\ww_v} \right) = -\frac{\ww(i,v)\ww(j,v)}{\ww_v} = \CC(i,j). \]
\end{proof}
\begin{remark}
Lemma \ref{lem:cliquesample_expectation} shows that $\vcliqsp{v}{\LL}$ produces the original $\vcliq{v}{\LL}$ in expectation.
\end{remark}
Now, we define \emph{Approximate Gaussian Elimination}.
% Let $\SS_0 = \LL$. Generate a radom permutation $\pi$ on $[n]$. For $i = 1$ to $i = n-1$ we define
% \begin{align*}
% \ll_i &= \frac{1}{\sqrt{\SS_{i-1}(\pi(i),\pi(i))}} \SS_{i-1}(:,\pi(i)), \\
% \SS_{i} &= \SS_{i-1} - \vstar{\pi(i)}{\SS_{i-1}} + \vcliqsp{\pi(i)}{\SS_{i-1}}.
% \end{align*}
\begin{algorithm}[H]
\label{alg:apxge}
\caption{Approximate Gaussian Elimination / Cholesky Decomposition}
\KwIn{Graph Laplacian $\LL$}
\KwOut{Lower triangular\footnote{$\matlow$ is not actually lower
triangular. However, if we let $\PP_\pi$ be the permutation matrix
corresponding to $\pi$, then $\PP_\pi \matlow$ is lower
triangular. Knowing the ordering that achieves this is enough to
let us implement forward and backward substitution for solving
linear equations in $\matlow$ and $\matlow^\trp$.}
$\matlow$ as
given in Theorem~\ref{thm:apxgauss}}
Let $\SS_0 = \LL$\;
Generate a random permutation $\pi$ on $[n]$\;
\For{$i = 1$ to $i = n-1$}{
$\ll_i = \frac{1}{\sqrt{\SS_{i-1}(\pi(i),\pi(i))}} \SS_{i-1}(:,\pi(i)) $\;
$\SS_{i} = \SS_{i-1} - \vstar{\pi(i)}{\SS_{i-1}} + \vcliqsp{\pi(i)}{\SS_{i-1}}$\
}
$\ll_n = \veczero_{n \times 1}$\;
\Return{$\matlow=\begin{bmatrix} \ll_1 \cdots \ll_n \end{bmatrix}$ and
$\pi$}\;
\end{algorithm}
% $\PP_\pi$ be the permutation matrix corresponding to $\pi$. It follows that $\matlow =
% \PP_\pi \begin{bmatrix} \ll_1 \cdots \ll_n \end{bmatrix}$ is lower
% triangular and $\LL=\matlow\matlow^\trp$.
Note that if we replace
$\vcliqsp{\pi(i)}{\SS_{i-1}}$ by $\vcliq{\pi(i)}{\SS_{i-1}}$ at each
step, then we can recover Gaussian Elimination, but with a random
elimination order.
\section{Analyzing Approximate Gaussian Elimination}
In this Section, we're going to analyze Approximate Gaussian
Elimination, and see why it works.
Ultimately, the main challenge in proving Theorem~\ref{thm:apxgauss}
will be to prove for the output $\matlow$
of Algorithm~\ref{alg:apxge} that with high probability
\begin{equation}
\label{eq:relerrgoal}
0.5 \LL
\preceq
\matlow \matlow^{\trp}
\preceq 1.5 \LL
.
\end{equation}
We can reduce this to proving that with high probability
\begin{equation}
\label{eq:spectralnormgoal}
\norm{\LL^{+/2} (\matlow \matlow^{\trp} - \LL) \LL^{+/2}} \leq 0.5
\end{equation}
Ultimately, the proof is going to have a lot in common with our proof
of Matrix Bernstein in Chapter~\ref{cha:randmat}.
Overall, the lesson there was that when we have a sum of independent,
zero-mean random matrices, we can show that the sum is likely to have
small spectral norm if the spectral norm of each random matrix is
small, and the matrix-valued variance is also small.
Thus, to replicate the proof, we need control over
\begin{enumerate}
\item The \emph{sample norms}.
\item The \emph{sample variance}.
\end{enumerate}
But, there is seemlingly another major obstacle: We are trying to
analyze a process where the samples are far from independent.
Each time we sample edges, we add new edges to the remaining graph,
which we will the later sample again. This creates a lot of
dependencies between the samples, which we have to handle.
However, it turns out that independence is more than what is needed to
prove concentration. Instead, it suffices to have a sequence of random
variables such that each is mean-zero in expectation, conditional on
the previous ones. This is called a martingale difference sequence.
We'll now learn about those.
\subsection{Normalization, a.k.a. Isotropic Position}
Since our analysis requires frequently measuring matrices after right
and left-multiplication by $\LL^{\pinv/2}$, we reintroduce the
``normalizing map'' $\Phi : \R^{n\times n} \to
\R^{n\times n} $
defined by
\[
\Phi(\AA) = \LL^{\pinv/2}\AA\LL^{\pinv/2}.
\]
We previously saw this in Chapter~\ref{cha:randmat}.
\subsection{Martingales}
A scalar martingale is a sequence of random variables $Z_0, \ldots,
Z_k$, such that
\begin{align}
\label{eq:martingale}
\E{Z_i \mid Z_0, \ldots, Z_{i-1}} = Z_{i-1}
.
\end{align}
That is, conditional on the outcome of all the previous random
variables, the expectation of $Z_{i}$ equals $Z_{i-1}$.
If we unravel the sequence of conditional expectations, we
get that \emph{without conditioning}
$\E{Z_k}=\E{Z_0}$.
Typically, we use martingales to show a statement along like ``$Z_k$
is concentrated around $\E{Z_k}$''.
We can also think of a martingale in terms of the sequence of changes
in the $Z_i$ variables.
Let $X_i = Z_i - Z_{i-1}$.
The sequence of $X_i$s is called a martingale difference sequence.
We can now state the martingale condition as
\[
\E{X_i \mid Z_0, \ldots, Z_{i-1}} = 0
.
\]
And because $Z_0$ and $X_{1}, \ldots, X_{i-1}$ completely determine
$Z_1, \ldots, Z_{i-1}$, we could also write
the martingale condition equivalently as
\[
\E{X_i \mid Z_0, X_1, \ldots, X_{i-1}} = 0
.
\]
Crucially, we can write
\[
Z_k = Z_0 + \sum_{i=1}^k Z_i - Z_{i-1} = Z_0 + \sum_{i=1}^k X_i
\]
and when we are trying to prove concentration, the martingale difference property
of the $X_i$'s is often ``as good as'' independence, meaning that
$\sum_{i=1}^k X_i$ concentrates similarly to a sum of independent
random variables.
\paragraph{Matrix-valued martingales.}
We can also define matrix-valued martingales.
In this case, we replace the martingalue condition of
Equation~\eqref{eq:martingale}, with the condition that the whole matrix
stays the same in expectation.
For example, we could have a sequence of random matrices $\ZZ_0, \ldots,
\ZZ_k \in \R^{n \times n}$, such that
\begin{align}
\label{eq:matmartingale}
\E{\ZZ_i \mid \ZZ_0, \ldots, \ZZ_{i-1}} = \ZZ_{i-1}
.
\end{align}
\begin{lemma}\label{lem:ApxGE_martingale}
Let $\LL_i = \SS_i + \sum_{j=1}^i \ll_j\ll_j^\trp$ for $i=1,...,n$ and $\LL_0=\SS_0=\LL$. Then
\[ \E{\LL_i | \text{all random variables before } \vcliqsp{\pi(i)}{\SS_{i-1}} } = \LL_{i-1}. \]
\end{lemma}
\begin{proof}
Let's only consider $i=1$ here as other cases are similar.
\[ \LL_0 = \LL = \ll_1\ll_1^\trp + \vcliq{v}{\LL} + \LL_{-1} \]
\begin{align*}
\LL_1 &= \ll_1\ll_1^\trp + \vcliqsp{v}{\LL} + \LL_{-1} \\
\E{\LL_1 | \pi(1)}
&= \ll_1\ll_1^\trp + \E{\vcliqsp{v}{\LL}|\pi(1)} + \LL_{-1} \\
&= \ll_1\ll_1^\trp + \vcliq{v}{\LL} + \LL_{-1} \\
&= \LL_0
\end{align*}
where we used Lemma~\ref{lem:cliquesample_expectation} to get
$\E{\vcliqsp{v}{\LL}|\pi(1)} = \vcliq{v}{\LL} $.
\end{proof}
\begin{remark}
$\sum_{j=1}^i \ll_j\ll_j^\trp$ can be treated as what has already been eliminated by (Approximate) Gaussian Elimination, while $\SS_i$ is what still left or going to be eliminated.
In Approximate Gaussian Elimination, $\LL_n=\sum_{i=1}^n\ll_i\ll_i^\trp$ and our goal is to show that $\LL_n\approx_K\LL$.
Note that $\LL_i$ is always equal to the original Laplacian $\LL$ for all $i$ in Gaussian Elimination.
Lemma \ref{lem:ApxGE_martingale} demonstrates that $\LL_0,\LL_1,...,\LL_n$ forms a matrix martingale.
\end{remark}
Ultimately, our plan is to use this matrix martingale structure to show
that ``$\LL_n$ is concentrated around $\LL$'' in some appropriate
sense.
More precisely, the spectral approximation we would like to show can
be established by showing that ``$\Phi(\LL_n)$ is concentrated around $\Phi(\LL)$''
\subsection{Martingale Difference Sequence as Edge-Samples}
We start by taking a slightly different view of the observations we
used to prove Lemma~\ref{lem:ApxGE_martingale}.
Recall that $\LL_i = \SS_i + \sum_{j=1}^i \ll_j\ll_j^\trp$,
and $\LL_{i-1} = \SS_{i-1} + \sum_{j=1}^{i-1} \ll_j\ll_j^\trp$
and
\[
\SS_{i} = \SS_{i-1} - \vstar{\pi(i)}{\SS_{i-1}} +
\vcliqsp{\pi(i)}{\SS_{i-1}}
. \]
Putting these together, we get
\begin{align}
\LL_i - \LL_{i-1}
&=
\ll_i\ll_i^\trp
+
\vcliqsp{\pi(i)}{\SS_{i-1}}
-
\vstar{\pi(i)}{\SS_{i-1}}
\nonumber
\\
\label{eq:apxgaussdiffseq}
&=
\vcliqsp{\pi(i)}{\SS_{i-1}}
-
\vcliq{\pi(i)}{\SS_{i-1}}
\\
&=
\vcliqsp{\pi(i)}{\SS_{i-1}}
-
\E{\vcliqsp{\pi(i)}{\SS_{i-1}} \mid \text{preceding samples}}
\tag*{by Lemma~\ref{lem:cliquesample_expectation}.}
\end{align}
In particular, recall that by Lemma~\ref{lem:cliquesample_expectation},
conditional on the randomness before
the call to $\vcliqsp{\pi(i)}{\SS_{i-1}}$, we
have
\[
\E{\vcliqsp{\pi(i)}{\SS_{i-1}} \mid \text{preceding samples}}= \vcliq{\pi(i)}{\SS_{i-1}}
\]
Adopting the notation of Lemma~\ref{lem:cliquesample_expectation}
we write
\[
\YY_{\pi(i)} = \vcliqsp{\pi(i)}{\SS_{i-1}}
\]
and we further introduce notation each multi-edge sample for
$e \in \vstar{\pi(i)}{\SS_{i-1}}$, as $\YY_{\pi(i),e}$, denoting the random
edge Laplacian sampled when the algorithm is processing multi-edge
$e$.
Thus, conditional on preceding samples, we have
\begin{equation}
\label{eq:cliquesamplesum}
\YY_{\pi(i)} = \sum_{e \in
\vstar{\pi(i)}{\SS_{i-1}}}\YY_{\pi(i),e}
\end{equation}
Note that even the number of multi-edges in
$\vstar{\pi(i)}{\SS_{i-1}}$ depends on the preceding samples.
We also want to associate zero-mean variables with each edge.
Conditional on preceding samples, we also define
\[
\XX_{i,e} = \Phi\left( \YY_{\pi(i),e} - \E{\YY_{\pi(i),e}} \right)
\text{ and }
\XX_{i} = \sum_{e \in
\vstar{\pi(i)}{\SS_{i-1}}}\XX_{i,e}
\]
and combining this with Equations~\eqref{eq:apxgaussdiffseq} and \eqref{eq:cliquesamplesum}
\[
\XX_{i}
= \Phi(\YY_{\pi(i)} - \E{\YY_{\pi(i)}})
= \Phi(\LL_i - \LL_{i-1})
\]
Altogether, we can write
\[
\Phi\left( \LL_n -\LL \right)
=
\sum_{i=1}^n \Phi(\LL_i - \LL_{i-1})
=
\sum_{i=1}^n \XX_i
=
\sum_{i=1}^n \sum_{e \in
\vstar{\pi(i)}{\SS_{i-1}}}\XX_{i,e}
\]
Note that the $\XX_{i,e}$ variables form a martingale difference
sequence, because the linearity of $\Phi$ ensures they are zero-mean
conditional on preceding randomness.
\subsection{Stopped Martingales}
Unfortunately, directly analyzing the concentration properties of
the $\LL_i$ martingale that we just introduced turns out to be
difficult.
The reason is that we're trying to prove some very delicate
multiplicative error guarantees.
And, if we analyze $\LL_i$, we find that the multiplicative error is
not easy to control, \emph{after it's already gotten big}.
But that's not really what we care about anyway: We want to say it
never gets big in the first place, with high probability.
So we need to introduce another martingale, that lets us ignore the
bad case when the error has already gotten too big.
At the same time, we also need to make sure that statements about our
new martingale can help us prove guarantees about $\LL_i$.
Fortunately, we can achieve both at once.
The technique we use is related to the much broader topic of
martingale \emph{stopping times}, which we only scratch the surface of
here. We're also going to be quite informal about it, in the interest
of brevity.
Lecture notes by Tropp \cite{tropp19} give a more formal introduction for
those who are interested.
We define the stopped martingale sequence $\LLtil_i$ by
\begin{equation}
\label{eq:stoppedmartingale}
\LLtil_i
=
\begin{cases}
\LL_i & \text{ if for all } j < i \text{ we have }
\LL_i \preceq 1.5 \LL
\\
\LL_{j^*} & \text{ for } j^* \text{ being the least $j$ such that } \LL_{j} \not\preceq 1.5 \LL
\end{cases}
\end{equation}
Figure~\ref{fig:stopmart} shows the $\LLtil_i$ martingale getting
stuck at the first time $\LL_{j^*} \not\preceq 1.5 \LL$.
\begin{figure}[H]
\centering
\includegraphics[width=1
\textwidth]{fig/lec9_stoppedmartingale.png}
\caption{Gaussian Elimination
:
$\vcliq{1}{\LL} = \vstar{1}{\LL} - \frac{1}{\LL(1,1)} \LL(:,1)
\LL(:,1)^{\trp}$.}
\label{fig:stopmart}
\end{figure}
We state the following without proof:
\begin{claim}
\noindent
\begin{enumerate}
\item The sequence $\setof{\LLtil_i}$ for $i = 0, \ldots, n$ is a
martingale.
\item $\norm{\LL^{+/2} (\LLtil_i - \LL) \LL^{+/2}} \leq 0.5$
implies $\norm{\LL^{+/2} (\LL_i - \LL) \LL^{+/2}} \leq 0.5$
\end{enumerate}
\end{claim}
The martingale property also implies that the unconditional
expectation satisfies $\E{\LLtil_n} = \LL$.
The proof of the claim is easy to sketch: For Part 1, each difference is
zero-mean if the condition has not been violated, and is identically
zero (and hence zero-mean) if it has been violated.
For Part 2, if the martingale $\setof{\LLtil_i}$ has stopped,
then $\norm{\LL^{+/2}
(\LLtil_i - \LL) \LL^{+/2}} \leq 0.5$ is false, and the implication
is vacuosly true.
If, on the other hand, the martingale has not stopped, the
quantities are equal, because $\LLtil_i = \LL_i$, and again it's easy
to see the implication holds.
Thus, ultimately, our strategy is goin to be to show that
$\norm{\LL^{+/2} (\LLtil_i - \LL) \LL^{+/2}} \leq 0.5$
with high probability.
Expressed using the normalizing map $\Phi(\cdot)$,
our goal is to show that with high probability
\[
\norm{\Phi(\LLtil_n - \LL)} \leq 0.5.
\]
\paragraph{Stopped martingale difference sequence.}
In order to prove the spectral norm bound, we want to express the
$\setof{\LLtil_i}$ martingale in terms of a sequence of martingale
differences.
To this end, we define
$\XXtil_i = \Phi(\LLtil_i - \LLtil_{i-1})$.
This ensures that
\begin{equation}
\label{eq:stoppedmartingale2}
\XXtil_i
=
\begin{cases}
\XX_i& \text{ if for all } j < i \text{ we have }
\LL_i \preceq 1.5 \LL
\\
\matzero & \text{ otherwise }
\end{cases}
\end{equation}
Whenever the modified martingale $\XXtil_i$ has not yet stopped, we
also introduce individual modified edge samples $\XXtil_{i,e} =
\XX_{i,e}$.
If the martingale \emph{has} stopped, i.e. $\XXtil_i = \matzero$,
then we can take these edge samples $\XXtil_{i,e}$
to be zero.
We can now write
\[
\Phi\left( \LLtil_n -\LL \right)
=
\sum_{i=1}^n \Phi(\LLtil_i - \LLtil_{i-1})
=
\sum_{i=1}^n \XXtil_i
=
\sum_{i=1}^n \sum_{e \in
\vstar{\pi(i)}{\SS_{i-1}}}\XXtil_{i,e}
.
\]
Thus, we can see that Equation~\eqref{eq:spectralnormgoal} is implied by
\begin{equation}
\label{eq:zeromeanspectralnormgoal}
\norm{\sum_{i=1}^n \XXtil_i} \leq 0.5.
\end{equation}
\subsection{Sample Norm Control}
In this Subsection, we're going to see that the norms of each
multi-edge sample is controlled throughout the algorithm.
\begin{lemma}\label{lem:cliquesample_bounded_norm}
Given two Laplacians $\LL$ and $\SS$ on the same vertex
set.\footnote{$\LL$ can be regarded as the original Laplacian we
care about, while $\SS$ can be regarded as some intermediate
Laplacian appearing during Approximate Gaussian Elimination.} If
each multiedge $e$ of $\vstar{v}{\SS}$ has bounded norm in the following sense,
\[ \norm{\LL^{\pinv/2}\ww_{\SS}(e)\bb_e\bb_e^{\trp}\LL^{\pinv/2}} \leq R, \]
then each possible sampled multiedge $e'$ of $\vcliqsp{v}{\SS}$ also satisfies
\[ \norm{\LL^{\pinv/2}\ww_{\mathrm{new}}(e')\bb_{e'}\bb_{e'}^{\trp}\LL^{\pinv/2}} \leq R. \]
\end{lemma}
\begin{proof}
Let $\ww=\ww_{\SS}$ for simplicity. Consider a sampled edge between $i$ and $j$ with weight $\ww_{\mathrm{new}}(i,j) = \ww(i,v)\ww(j,v)/(\ww(i,v)+\ww(j,v))$.
\begin{align*}
\norm{\LL^{\pinv/2} \ww_{\mathrm{new}}(i,j) \bb_{ij}\bb_{ij}^{\trp}\LL^{\pinv/2}}
&= \ww_{\mathrm{new}}(i,j) \norm{\LL^{\pinv/2} \bb_{ij}\bb_{ij}^{\trp}\LL^{\pinv/2}} \\
&= \ww_{\mathrm{new}}(i,j) \norm{ \LL^{\pinv/2}\bb_{ij} }^2 \\
&\leq \ww_{\mathrm{new}}(i,j) \left( \norm{\LL^{\pinv/2}\bb_{iv}}^2 + \norm{\LL^{\pinv/2}\bb_{jv}}^2 \right) \\
&= \frac{\ww(j,v)}{\ww(i,v)+\ww(j,v)} \norm{\LL^{\pinv/2} \ww(i,v)\bb_{iv}\bb_{iv}^{\trp}\LL^{\pinv/2}} + \\
& ~\quad \frac{\ww(i,v)}{\ww(i,v)+\ww(j,v)} \norm{\LL^{\pinv/2} \ww(j,v)\bb_{jv}\bb_{jv}^{\trp}\LL^{\pinv/2}} \\
&\leq \frac{\ww(j,v)}{\ww(i,v)+\ww(j,v)} R + \frac{\ww(i,v)}{\ww(i,v)+\ww(j,v)} R \\
&= R
\end{align*}
The first inequality uses the triangle inequality of effective
resistance in $\LL$, in that effective resistance is a distance as
we proved in Chapter~\ref{cha:pinver}. The second inequality just uses the conditions of this lemma.
\end{proof}
\begin{remark}
Lemma \ref{lem:cliquesample_bounded_norm} only requires that each single multiedge has small norm instead of that the sum of all edges between a pair of vertices have small norm. And this lemma tells us, after sampling, each multiedge in the new graph still satisfies the bounded norm condition.
\end{remark}
From the Lemma, we can conclude that each edge sample $\YY_{\pi(i),e}$
satisfies
$\norm{\Phi(\YY_{\pi(i),e})} \leq R$
provided the assumptions of the
Lemma hold. Let's record this observation as a Lemma.
\begin{lemma}
If for all $e \in \vstar{v}{\SS_i}$,
\[
\norm{\Phi(\ww_{\SS_i }(e)\bb_{e} \bb_{e}^{\trp})}
\leq
R
.
\]
then all $e \in \vstar{\pi(i)}{\SS_i}$,
\[
\norm{\Phi(\YY_{\pi(i),e})} \leq R
.
\]
\end{lemma}
\paragraph{Preprocessing by multi-edge splitting.}
In the original graph of Laplacian $\LL$ of graph $G = (V,E,\ww)$, we
have for each edge $\hat{e}$ that
\[
\ww(\hat{e}) \bb_{\hat{e}}\bb_{\hat{e}}^{\trp} \preceq \sum_e \ww(e) \bb_{e}\bb_{e}^{\trp}= \LL
\]
This also implies that
\[
\norm{\LL^{\pinv/2} \ww(\hat{e}) \bb_{\hat{e}}\bb_{\hat{e}}^{\trp} \LL^{\pinv/2} }\leq 1.
\]
Now, that means that if we split every original edge $e$ of the graph
into $K$ multi-edges $e_1, \ldots e_K$, with a fraction $1/K$ of the
weight, we get a new graph $G' = (V, E', \ww')$ such that
\begin{claim}
\label{clm:edgesplit}
\noindent
\begin{enumerate}
\item $G'$ and $G$ have the same graph Laplacian.
\item $\abs{E'} = K\abs{E}$
\item For every multi-edge in $G'$
\[
\norm{\LL^{\pinv/2} \ww'(e) \bb_{e}\bb_{e}^{\trp} \LL^{\pinv/2}
}\leq 1/K.
\]
\end{enumerate}
\end{claim}
Before we run Approximate Gaussian Elimination, we are going to do
this multi-edge splitting to ensure we have control over multi-edge
sample norms.
%
Combined with Lemma~\ref{lem:cliquesample_bounded_norm} immediately
establishes the next lemma, because we start off with all multi-edges
having bounded norm and only produce multi-edges with bounded norm.
\begin{lemma}
\label{lem:edgesampnorm}
When Algorithm~\ref{alg:apxge} is run on the (multi-edge) Laplacian of $G'$,
arising from splitting edges of $G$ into $K$ multi-edges, the every
edge sample $\YY_{\pi(i),e}$ satisfies
\[
\norm{\Phi(\YY_{\pi(i),e})} \leq 1/K
.
\]
\end{lemma}
As we will see later $K = 200 \log^2 n$ suffices.
\subsection{Random Matrix Concentration from Trace Exponentials}
Let us recall how matrix-valued variances come into the picture when
proving concentration following the strategy from Matrix Bernstein in
Chapter~\ref{cha:randmat}.
For some matrix-valued random variable $\XX \in \symsetn$,
we'd like to show $\Pr[ \norm{\XX} \leq 0.5 ]$.
Using Markov's inequality, and some observations about matrix
exponentials and traces, we saw that for all $\theta > 0$,
\begin{equation}
\label{eq:masterprob}
\Pr[ \norm{\XX} \geq 0.5 ]
\leq
\exp(-0.5\theta ) \left(\E{\trace{ \exp\left(\theta \XX\right)}}
+
\E{\trace{ \exp\left(-\theta \XX\right)}}
\right)
.
\end{equation}
We then want to bound $\E{\trace{ \exp\left(\theta \XX\right)}}$
using Lieb's theorem.
We can handle $\E{\trace{ \exp\left(-\theta \XX\right)}}$ similarly.
\begin{theorem}[Lieb]
\label{thm:liebagain}
Let $f:S^n_{++}\to\R$ be a matrix function given by
\[ f(\AA) = \trace{\exp\left(\HH+\log(\AA)\right)} \]
for some $\HH\in S^n$. Then $-f$ is convex (i.e. $f$ is concave).
\end{theorem}
As observed by Tropp, this is useful for proving matrix concentration statements.
Combined with Jensen's inequality, it gives that for a random matrix
$\XX \in \symsetn $ and a fixed $\HH \in \symsetn$
\[
\E{\trace{ \exp\left(\HH+\XX\right)}}
\leq
\trace{ \exp\left(\HH+\log(\E{\exp(\XX)})\right)}
.
\]
The next crucial step was to show that it suffices to obtain an upper
bound on the matrix $\E{\exp(\XX)}$ w.r.t the Loewner order.
Using the following three lemmas, this conclusion is an immediate
corollary.
\begin{lemma}\label{lem:trexpmono}
If $\AA\preceq\BB$, then $\trace{\exp(\AA)}\leq\trace{\exp(\BB)}$.
% i.e. $\ZZ \mapsto \trace{\exp(\ZZ)}$ is monotone increasing.
\end{lemma}
\begin{lemma}
If $0\prec\AA\preceq\BB$, then $\log(\AA)\preceq\log(\BB)$.
\end{lemma}
\begin{lemma}\label{lem:ineq_logagain}
$\log(\II+\AA) \preceq \AA$ for $\AA\succ-\II$.
\end{lemma}
%
\begin{corollary}
\label{cor:trexpub}
For a random matrix
$\XX \in \symsetn $ and a fixed $\HH \in \symsetn$,
if $\E{\exp(\XX)} \preceq \II + \UU$ where $\UU \succ -\II$, then
\[
\E{\trace{ \exp\left(\HH+\XX\right)}}
\leq
\trace{ \exp\left(\HH+\UU\right)}
.
\]
\end{corollary}
% \begin{corollary}\label{cor:trexpmono}
% If $\AA\preceq\BB$, then $\trace{\exp(\AA)}\leq\trace{\exp(\BB)}$,
% i.e. $\XX \mapsto \trace{\exp(\XX)}$ is monotone increasing.
% \end{corollary}
% \begin{lemma}\label{lem:logmono}
% If $0\prec\AA\preceq\BB$, then $\log(\AA)\preceq\log(\BB)$.
% \end{lemma}
\subsection{Mean-Exponential Bounds from Variance Bounds}
To use Corollary~\ref{cor:trexpub}, we need to construct useful upper
bounds on $\E{\exp(\XX)}$.
This can be done, starting from the following lemma.
\begin{lemma}\label{lem:ineq_expagain}
$\exp(\AA) \preceq \II + \AA + \AA^2$ for $\|\AA\|\leq1$.
\end{lemma}
If $\XX$ is zero-mean and $\norm{\XX} \leq 1$,
this means that $\E{\exp(\XX)} \preceq \II + \E{\XX^2}$,
which is how we end up wanting to bound the matrix-valued variance $\E{\XX^2}$.
In the rest of this Subsection, we're going to see the matrix-valued variance of the stopped
martingale is bounded throughout the algorithm.
Firstly, we note that for a single edge sample $\XXtil_{i,e}$,
by Lemma~\ref{lem:edgesampnorm}, we have that
\[
\norm{\XXtil_{i,e}} \leq
\norm{\Phi\left( \YY_{\pi(i),e} - \E{\YY_{\pi(i),e}} \right)}
\leq 1/K,
\]
using that $\norm{\AA-\BB} \leq \max( \norm{\AA}, \norm{\BB} )$, for
$\AA, \BB \succeq \matzero$, and $\norm{\E{\AA}} \leq \E{\norm{\AA}}$
by Jensen's inequality.
Thus, if $0 < \theta \leq K$, we have that
\begin{align}
\label{eq:edgelogexp}
\E{ \exp(\theta \XXtil_{i,e}) \mid \text{preceding samples} }
&\preceq
\II +
\E{(\theta \XXtil_{i,e})^2 \mid \text{preceding samples} }
\\ \nonumber &\preceq
\II +
\frac{1}{K}\theta^2\cdot
\E{\Phi(\YY_{\pi(i),e}) \mid \text{preceding samples} }
\end{align}
% \begin{lemma}
% \label{lem:edgelogexp}
% \[
% \log \Ex{\XX_{v_i,d_i-1}}\exp(\theta\XX_{v_i,d_i}) \preceq
% \theta^2 R \cdot
% \Ex{\XX_{v_i,d_i-1}}\Phi(\YY_{v_i,d_i})
% \]
% \end{lemma}
\subsection{The Overall Mean-Trace-Exponential Bound}