-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_multi_reso_distill.py
244 lines (204 loc) · 9.03 KB
/
train_multi_reso_distill.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import argparse
import logging
import os
import torch
from torch import distributed
from torch.utils.tensorboard import SummaryWriter
import torchvision.transforms as transforms
from backbones import get_model
from dataset import get_dataloader
from torch.utils.data import DataLoader
from lr_scheduler import PolyScheduler
from losses import CosFace, ArcFace, CurricularFace
from partial_fc import PartialFC
from utils.utils_callbacks import CallBackLogging_v2, CallBackVerification
from utils.utils_config import get_config
from utils.utils_logging import AverageMeter, init_logging
from utils.utils_features import extract_feature, save_feat
from distillers.distill_feat import Distill
try:
world_size = int(os.environ["WORLD_SIZE"])
rank = int(os.environ["RANK"])
distributed.init_process_group("nccl")
except KeyError:
world_size = 1
rank = 0
distributed.init_process_group(
backend="nccl",
init_method="tcp://127.0.0.1:12584",
rank=rank,
world_size=world_size,
)
def main(args):
torch.cuda.set_device(args.local_rank)
cfg = get_config(args.config)
os.makedirs(cfg.output, exist_ok=True) #make dir according to the output path set in cfg
init_logging(rank, cfg.output)
summary_writer = (
SummaryWriter(log_dir=os.path.join(cfg.output, "tensorboard"))
if rank == 0
else None
) #only for rank=0 machine
########## Data ####################
train_loader = get_dataloader(
cfg.rec, local_rank=args.local_rank, batch_size=cfg.batch_size, dali=cfg.dali, test=False, resolution=112, upsample=cfg.upsample, load_type=cfg.load_type)
downsample = transforms.Compose([transforms.Resize(size=(cfg.resolution, cfg.resolution))])
########### Student Model #################
backbone = get_model(
cfg.network, cfg.resolution, dropout = 0.0, fp16 = cfg.fp16, num_features = cfg.embedding_size ).cuda()
if cfg.pretrained and rank == 0:
for load_path in os.listdir(cfg.pretrained_path):
if load_path.startswith('model'):
print("Start loading from %s for student"%load_path)
weights = torch.load(os.path.join(cfg.pretrained_path, load_path))
backbone.load_state_dict(weights, strict=False)
backbone = torch.nn.parallel.DistributedDataParallel(
module=backbone, broadcast_buffers=False, device_ids=[args.local_rank],find_unused_parameters=True) #False
if cfg.fix_trunk:
fix_para = cfg.fix_params
for name, param in backbone.named_parameters():
for i, fix in enumerate(fix_para):
if fix in name and 'bn' not in name:
param.requires_grad = False
if i==0 and fix+'.0' in name:
param.requires_grad = True
for name, param in backbone.named_parameters():
if param.requires_grad == False:
print(name)
backbone.train()
####### Teacher model #############
teacher = get_model(
cfg.network, 112, dropout = 0.0, fp16 = cfg.fp16, num_features = cfg.embedding_size ).cuda()
if cfg.pretrained and rank == 0:
for load_path in os.listdir(cfg.pretrained_path):
if load_path.startswith('model'):
print("Start loading from %s for teacher"%load_path)
weights = torch.load(os.path.join(cfg.pretrained_path, load_path))
teacher.load_state_dict(weights, strict=True)
teacher = torch.nn.parallel.DistributedDataParallel(
module=teacher, broadcast_buffers=False, device_ids=[args.local_rank],find_unused_parameters=False)
teacher.eval()
distiller = Distill(backbone,teacher,cfg,downsample)
############# Loss ####################
if cfg.loss == "arcface":
margin_loss = ArcFace()
elif cfg.loss == "cosface":
margin_loss = CosFace()
elif cfg.loss == "curricularface":
margin_loss = CurricularFace()
else:
raise
############# Classification head ###########
module_partial_fc = PartialFC(
margin_loss,
cfg.embedding_size,
cfg.num_classes,
cfg.sample_rate,
cfg.fp16
)
if cfg.pretrained:
for load_path in os.listdir(cfg.pretrained_path):
if load_path.startswith('softmax') and str(rank) == load_path[15]:
print("Start loading from %s"%load_path)
weights = torch.load(os.path.join(cfg.pretrained_path, load_path))
module_partial_fc.load_state_dict(weights, strict=False)
module_partial_fc.train().cuda()
######## BCT training selection #############
if cfg.fix_classifier:
opt_params=[{"params":backbone.parameters(),},]
if rank == 0:
print("classifier is fixed !")
if cfg.fix_trunk:
opt_params=[{"params":filter(lambda p: p.requires_grad, backbone.parameters()),},]
else:
opt_params=[
{"params": backbone.parameters(), },
{"params": module_partial_fc.parameters(), },
]
opt = torch.optim.SGD(
params=opt_params, #filter(lambda p : p.requires_grad, backbone.parameters()),
lr=cfg.lr,
momentum=0.9,
weight_decay=cfg.weight_decay
)
total_batch_size = cfg.batch_size * world_size
cfg.warmup_step = cfg.num_image // total_batch_size * cfg.warmup_epoch
cfg.total_step = cfg.num_image // total_batch_size * cfg.num_epoch
lr_scheduler = PolyScheduler(
optimizer=opt,
base_lr=cfg.lr,
max_steps=cfg.total_step,
warmup_steps=cfg.warmup_step
)
for key, value in cfg.items():
num_space = 25 - len(key)
logging.info(": " + key + " " * num_space + str(value))
callback_verification = CallBackVerification(
val_targets=cfg.val_targets, rec_prefix=cfg.rec, summary_writer=summary_writer, image_size = (cfg.resolution, cfg.resolution)
)
callback_logging = CallBackLogging_v2(
frequent=cfg.frequent,
total_step=cfg.total_step,
batch_size=cfg.batch_size,
writer=summary_writer
)
if cfg.save_feat:
print("Start saving features in the training sets")
train_loader = get_dataloader(cfg.rec, local_rank=args.local_rank, batch_size=cfg.batch_size, dali=cfg.dali, test=True)
save_feat(backbone, train_loader, cfg.output)
print("Finish saving features")
return
loss_am = AverageMeter()
loss_cls_am = AverageMeter()
loss_kd_am = AverageMeter()
start_epoch = 0
global_step = 0
amp = torch.cuda.amp.grad_scaler.GradScaler(growth_interval=100)
for epoch in range(start_epoch, cfg.num_epoch):
if isinstance(train_loader, DataLoader):
train_loader.sampler.set_epoch(epoch)
for _, (img, local_labels) in enumerate(train_loader):
global_step += 1
local_embeddings, losses_dict = distiller(image = img)
loss_kd = sum([l.mean() for l in losses_dict.values()])
loss_cls: torch.Tensor = module_partial_fc(local_embeddings, local_labels, opt)
loss = loss_cls + cfg.kd_loss_weight * loss_kd
if cfg.fp16:
amp.scale(loss_cls)
amp.scale(loss_kd)
amp.scale(loss).backward()
amp.unscale_(opt)
torch.nn.utils.clip_grad_norm_(backbone.parameters(), 5)
amp.step(opt)
amp.update()
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(backbone.parameters(), 5)
opt.step()
opt.zero_grad()
lr_scheduler.step()
with torch.no_grad():
loss_am.update(loss.item(), 1)
loss_cls_am.update(loss_cls.item(),1)
loss_kd_am.update(loss_kd.item(),1)
callback_logging(global_step, loss_am, loss_cls_am, loss_kd_am, epoch, cfg.fp16, lr_scheduler.get_last_lr()[0], amp)
if global_step % cfg.verbose == 0 and global_step > 200:
callback_verification(global_step, backbone)
path_pfc = os.path.join(cfg.output, "softmax_fc_gpu_{}.pt".format(rank))
torch.save(module_partial_fc.state_dict(), path_pfc)
if rank == 0:
path_module = os.path.join(cfg.output, "model.pt")
# TODO: filter out the trunk params before saving the branches
torch.save(backbone.module.state_dict(), path_module)
if cfg.dali:
train_loader.reset()
if rank == 0:
path_module = os.path.join(cfg.output, "model.pt")
torch.save(backbone.module.state_dict(), path_module)
distributed.destroy_process_group()
if __name__ == "__main__":
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description="Distributed BTNet Training in Pytorch with distillation")
parser.add_argument("config", type=str, help="py config file")
parser.add_argument("--local_rank", type=int, default=0, help="local_rank")
main(parser.parse_args())