-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluator.py
48 lines (37 loc) · 1.61 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
import External_Libraries.Notebooks_utils.evaluation_function as eval
def evaluate(target_users, recommender, URM, at=10):
cumulative_precision = 0.0
cumulative_recall = 0.0
cumulative_MAP = 0.0
num_eval = 0
goodUsers = []
for user in target_users:
#if num_eval % 10000 == 0:
#print("Evaluated user {} of {}".format(num_eval, len(target_users)))
start_pos = URM.indptr[user]
end_pos = URM.indptr[user + 1]
relevant_items = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
if end_pos - start_pos > 0:
relevant_items = URM.indices[start_pos:end_pos]
is_relevant = np.in1d(recommender.recommend(user, cutoff=at), relevant_items, assume_unique=True)
else:
is_relevant = np.array([False, False, False, False, False, False, False, False, False, False])
if True in is_relevant[:2]:
goodUsers.append(user)
num_eval += 1
cumulative_precision += eval.precision(is_relevant, relevant_items)
cumulative_recall += eval.recall(is_relevant, relevant_items)
cumulative_MAP += eval.MAP(is_relevant, relevant_items)
cumulative_precision /= num_eval
cumulative_recall /= num_eval
cumulative_MAP /= num_eval
print("Recommender performance is: Precision = {:.4f}, Recall = {:.4f}, MAP@10 = {:.4f}".format(
cumulative_precision, cumulative_recall, cumulative_MAP))
result_dict = {
"precision": cumulative_precision,
"recall": cumulative_recall,
"MAP": cumulative_MAP,
"Users": goodUsers
}
return result_dict