From 0a59dcd17ccc64164b43ef8065f5732d3f82d271 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Alexander=20M=C3=A4rz?=
<41187941+StatMixedML@users.noreply.github.com>
Date: Wed, 9 Aug 2023 09:34:40 +0200
Subject: [PATCH] Update README.md
---
README.md | 1 +
1 file changed, 1 insertion(+)
diff --git a/README.md b/README.md
index 07ebbff4..554534f1 100644
--- a/README.md
+++ b/README.md
@@ -28,6 +28,7 @@ We propose a new framework of XGBoost that predicts the entire conditional distr
:white_check_mark: Estimation of all distributional parameters.
:white_check_mark: Multi-target regression allows modelling of multivariate responses and their dependencies.
:white_check_mark: Normalizing Flows allow modelling of complex and multi-modal distributions.
+:white_check_mark: Zero-Adjusted and Zero-Inflated Distributions for modelling excess of zeros in the data.
:white_check_mark: Automatic derivation of Gradients and Hessian of all distributional parameters using [PyTorch](https://pytorch.org/docs/stable/autograd.html).
:white_check_mark: Automated hyper-parameter search, including pruning, is done via [Optuna](https://optuna.org/).
:white_check_mark: The output of XGBoostLSS is explained using [SHapley Additive exPlanations](https://github.com/dsgibbons/shap).