forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
io_processors_test.py
73 lines (56 loc) · 2.39 KB
/
io_processors_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for io_processors."""
import numpy as np
import tensorflow as tf
from perceiver import io_processors
def _create_test_image(shape):
image = np.arange(np.prod(np.array(shape)))
return np.reshape(image, shape)
def test_space_to_depth_image():
image_shape = (2, 3 * 5, 3 * 7, 11)
image = _create_test_image(image_shape)
output = io_processors.space_to_depth(image, spatial_block_size=3)
assert output.shape == (2, 5, 7, 3 * 3 * 11)
def test_space_to_depth_video():
image_shape = (2, 5 * 7, 3 * 11, 3 * 13, 17)
image = _create_test_image(image_shape)
output = io_processors.space_to_depth(image, spatial_block_size=3,
temporal_block_size=5)
assert output.shape == (2, 7, 11, 13, 5 * 3 * 3 * 17)
def test_reverse_space_to_depth_image():
image_shape = (2, 5, 7, 3 * 3 * 11)
image = _create_test_image(image_shape)
output = io_processors.reverse_space_to_depth(image, spatial_block_size=3)
assert output.shape == (2, 3 * 5, 3 * 7, 11)
def test_reverse_space_to_depth_video():
image_shape = (2, 7, 11, 13, 5 * 3 * 3 * 17)
image = _create_test_image(image_shape)
output = io_processors.reverse_space_to_depth(
image, spatial_block_size=3, temporal_block_size=5)
assert output.shape == (2, 5 * 7, 3 * 11, 3 * 13, 17)
def test_extract_patches():
image_shape = (2, 5, 7, 3)
image = _create_test_image(image_shape)
sizes = [1, 2, 3, 1]
strides = [1, 1, 2, 1]
rates = [1, 2, 1, 1]
for padding in ["VALID", "SAME"]:
jax_patches = io_processors.extract_patches(
image, sizes=sizes, strides=strides, rates=rates, padding=padding)
tf_patches = tf.image.extract_patches(
image, sizes=sizes, strides=strides, rates=rates, padding=padding)
assert np.array_equal(
np.array(jax_patches),
tf_patches.numpy())