-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathmmditx.py
914 lines (814 loc) · 30.3 KB
/
mmditx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
### This file contains impls for MM-DiT, the core model component of SD3
import math
from typing import Dict, List, Optional
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange, repeat
from other_impls import Mlp, attention
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
img_size: Optional[int] = 224,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 768,
flatten: bool = True,
bias: bool = True,
strict_img_size: bool = True,
dynamic_img_pad: bool = False,
dtype=None,
device=None,
):
super().__init__()
self.patch_size = (patch_size, patch_size)
if img_size is not None:
self.img_size = (img_size, img_size)
self.grid_size = tuple(
[s // p for s, p in zip(self.img_size, self.patch_size)]
)
self.num_patches = self.grid_size[0] * self.grid_size[1]
else:
self.img_size = None
self.grid_size = None
self.num_patches = None
# flatten spatial dim and transpose to channels last, kept for bwd compat
self.flatten = flatten
self.strict_img_size = strict_img_size
self.dynamic_img_pad = dynamic_img_pad
self.proj = nn.Conv2d(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=patch_size,
bias=bias,
dtype=dtype,
device=device,
)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # NCHW -> NLC
return x
def modulate(x, shift, scale):
if shift is None:
shift = torch.zeros_like(scale)
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Sine/Cosine Positional Embedding Functions #
#################################################################################
def get_2d_sincos_pos_embed(
embed_dim,
grid_size,
cls_token=False,
extra_tokens=0,
scaling_factor=None,
offset=None,
):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
if scaling_factor is not None:
grid = grid / scaling_factor
if offset is not None:
grid = grid - offset
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate(
[np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0
)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
return np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""Embeds scalar timesteps into vector representations."""
def __init__(
self, hidden_size, frequency_embedding_size=256, dtype=None, device=None
):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(
frequency_embedding_size,
hidden_size,
bias=True,
dtype=dtype,
device=device,
),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
)
if torch.is_floating_point(t):
embedding = embedding.to(dtype=t.dtype)
return embedding
def forward(self, t, dtype, **kwargs):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
t_emb = self.mlp(t_freq)
return t_emb
class VectorEmbedder(nn.Module):
"""Embeds a flat vector of dimension input_dim"""
def __init__(self, input_dim: int, hidden_size: int, dtype=None, device=None):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(input_dim, hidden_size, bias=True, dtype=dtype, device=device),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.mlp(x)
#################################################################################
# Core DiT Model #
#################################################################################
def split_qkv(qkv, head_dim):
qkv = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, -1, head_dim).movedim(2, 0)
return qkv[0], qkv[1], qkv[2]
def optimized_attention(qkv, num_heads):
return attention(qkv[0], qkv[1], qkv[2], num_heads)
class SelfAttention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_scale: Optional[float] = None,
pre_only: bool = False,
qk_norm: Optional[str] = None,
rmsnorm: bool = False,
dtype=None,
device=None,
):
super().__init__()
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
if not pre_only:
self.proj = nn.Linear(dim, dim, dtype=dtype, device=device)
self.pre_only = pre_only
if qk_norm == "rms":
self.ln_q = RMSNorm(
self.head_dim,
elementwise_affine=True,
eps=1.0e-6,
dtype=dtype,
device=device,
)
self.ln_k = RMSNorm(
self.head_dim,
elementwise_affine=True,
eps=1.0e-6,
dtype=dtype,
device=device,
)
elif qk_norm == "ln":
self.ln_q = nn.LayerNorm(
self.head_dim,
elementwise_affine=True,
eps=1.0e-6,
dtype=dtype,
device=device,
)
self.ln_k = nn.LayerNorm(
self.head_dim,
elementwise_affine=True,
eps=1.0e-6,
dtype=dtype,
device=device,
)
elif qk_norm is None:
self.ln_q = nn.Identity()
self.ln_k = nn.Identity()
else:
raise ValueError(qk_norm)
def pre_attention(self, x: torch.Tensor):
B, L, C = x.shape
qkv = self.qkv(x)
q, k, v = split_qkv(qkv, self.head_dim)
q = self.ln_q(q).reshape(q.shape[0], q.shape[1], -1)
k = self.ln_k(k).reshape(q.shape[0], q.shape[1], -1)
return (q, k, v)
def post_attention(self, x: torch.Tensor) -> torch.Tensor:
assert not self.pre_only
x = self.proj(x)
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
(q, k, v) = self.pre_attention(x)
x = attention(q, k, v, self.num_heads)
x = self.post_attention(x)
return x
class RMSNorm(torch.nn.Module):
def __init__(
self,
dim: int,
elementwise_affine: bool = False,
eps: float = 1e-6,
device=None,
dtype=None,
):
"""
Initialize the RMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (nn.Parameter): Learnable scaling parameter.
"""
super().__init__()
self.eps = eps
self.learnable_scale = elementwise_affine
if self.learnable_scale:
self.weight = nn.Parameter(torch.empty(dim, device=device, dtype=dtype))
else:
self.register_parameter("weight", None)
def _norm(self, x):
"""
Apply the RMSNorm normalization to the input tensor.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The normalized tensor.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
"""
Forward pass through the RMSNorm layer.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying RMSNorm.
"""
x = self._norm(x)
if self.learnable_scale:
return x * self.weight.to(device=x.device, dtype=x.dtype)
else:
return x
class SwiGLUFeedForward(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: Optional[float] = None,
):
"""
Initialize the FeedForward module.
Args:
dim (int): Input dimension.
hidden_dim (int): Hidden dimension of the feedforward layer.
multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
Attributes:
w1 (ColumnParallelLinear): Linear transformation for the first layer.
w2 (RowParallelLinear): Linear transformation for the second layer.
w3 (ColumnParallelLinear): Linear transformation for the third layer.
"""
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
def forward(self, x):
return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x))
class DismantledBlock(nn.Module):
"""A DiT block with gated adaptive layer norm (adaLN) conditioning."""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qkv_bias: bool = False,
pre_only: bool = False,
rmsnorm: bool = False,
scale_mod_only: bool = False,
swiglu: bool = False,
qk_norm: Optional[str] = None,
x_block_self_attn: bool = False,
dtype=None,
device=None,
**block_kwargs,
):
super().__init__()
if not rmsnorm:
self.norm1 = nn.LayerNorm(
hidden_size,
elementwise_affine=False,
eps=1e-6,
dtype=dtype,
device=device,
)
else:
self.norm1 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = SelfAttention(
dim=hidden_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
pre_only=pre_only,
qk_norm=qk_norm,
rmsnorm=rmsnorm,
dtype=dtype,
device=device,
)
if x_block_self_attn:
assert not pre_only
assert not scale_mod_only
self.x_block_self_attn = True
self.attn2 = SelfAttention(
dim=hidden_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
pre_only=False,
qk_norm=qk_norm,
rmsnorm=rmsnorm,
dtype=dtype,
device=device,
)
else:
self.x_block_self_attn = False
if not pre_only:
if not rmsnorm:
self.norm2 = nn.LayerNorm(
hidden_size,
elementwise_affine=False,
eps=1e-6,
dtype=dtype,
device=device,
)
else:
self.norm2 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
if not pre_only:
if not swiglu:
self.mlp = Mlp(
in_features=hidden_size,
hidden_features=mlp_hidden_dim,
act_layer=nn.GELU(approximate="tanh"),
dtype=dtype,
device=device,
)
else:
self.mlp = SwiGLUFeedForward(
dim=hidden_size, hidden_dim=mlp_hidden_dim, multiple_of=256
)
self.scale_mod_only = scale_mod_only
if x_block_self_attn:
assert not pre_only
assert not scale_mod_only
n_mods = 9
elif not scale_mod_only:
n_mods = 6 if not pre_only else 2
else:
n_mods = 4 if not pre_only else 1
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(
hidden_size, n_mods * hidden_size, bias=True, dtype=dtype, device=device
),
)
self.pre_only = pre_only
def pre_attention(self, x: torch.Tensor, c: torch.Tensor):
assert x is not None, "pre_attention called with None input"
if not self.pre_only:
if not self.scale_mod_only:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.adaLN_modulation(c).chunk(6, dim=1)
)
else:
shift_msa = None
shift_mlp = None
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(
c
).chunk(4, dim=1)
qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa))
return qkv, (x, gate_msa, shift_mlp, scale_mlp, gate_mlp)
else:
if not self.scale_mod_only:
shift_msa, scale_msa = self.adaLN_modulation(c).chunk(2, dim=1)
else:
shift_msa = None
scale_msa = self.adaLN_modulation(c)
qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa))
return qkv, None
def post_attention(self, attn, x, gate_msa, shift_mlp, scale_mlp, gate_mlp):
assert not self.pre_only
x = x + gate_msa.unsqueeze(1) * self.attn.post_attention(attn)
x = x + gate_mlp.unsqueeze(1) * self.mlp(
modulate(self.norm2(x), shift_mlp, scale_mlp)
)
return x
def pre_attention_x(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
assert self.x_block_self_attn
(
shift_msa,
scale_msa,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
shift_msa2,
scale_msa2,
gate_msa2,
) = self.adaLN_modulation(c).chunk(9, dim=1)
x_norm = self.norm1(x)
qkv = self.attn.pre_attention(modulate(x_norm, shift_msa, scale_msa))
qkv2 = self.attn2.pre_attention(modulate(x_norm, shift_msa2, scale_msa2))
return (
qkv,
qkv2,
(
x,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
gate_msa2,
),
)
def post_attention_x(
self,
attn,
attn2,
x,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
gate_msa2,
attn1_dropout: float = 0.0,
):
assert not self.pre_only
if attn1_dropout > 0.0:
# Use torch.bernoulli to implement dropout, only dropout the batch dimension
attn1_dropout = torch.bernoulli(
torch.full((attn.size(0), 1, 1), 1 - attn1_dropout, device=attn.device)
)
attn_ = (
gate_msa.unsqueeze(1) * self.attn.post_attention(attn) * attn1_dropout
)
else:
attn_ = gate_msa.unsqueeze(1) * self.attn.post_attention(attn)
x = x + attn_
attn2_ = gate_msa2.unsqueeze(1) * self.attn2.post_attention(attn2)
x = x + attn2_
mlp_ = gate_mlp.unsqueeze(1) * self.mlp(
modulate(self.norm2(x), shift_mlp, scale_mlp)
)
x = x + mlp_
return x
def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
assert not self.pre_only
if self.x_block_self_attn:
(q, k, v), (q2, k2, v2), intermediates = self.pre_attention_x(x, c)
attn = attention(q, k, v, self.attn.num_heads)
attn2 = attention(q2, k2, v2, self.attn2.num_heads)
return self.post_attention_x(attn, attn2, *intermediates)
else:
(q, k, v), intermediates = self.pre_attention(x, c)
attn = attention(q, k, v, self.attn.num_heads)
return self.post_attention(attn, *intermediates)
def block_mixing(context, x, context_block, x_block, c):
assert context is not None, "block_mixing called with None context"
context_qkv, context_intermediates = context_block.pre_attention(context, c)
if x_block.x_block_self_attn:
x_qkv, x_qkv2, x_intermediates = x_block.pre_attention_x(x, c)
else:
x_qkv, x_intermediates = x_block.pre_attention(x, c)
q, k, v = tuple(
torch.cat(tuple(qkv[i] for qkv in [context_qkv, x_qkv]), dim=1)
for i in range(3)
)
attn = attention(q, k, v, x_block.attn.num_heads)
context_attn, x_attn = (
attn[:, : context_qkv[0].shape[1]],
attn[:, context_qkv[0].shape[1] :],
)
if not context_block.pre_only:
context = context_block.post_attention(context_attn, *context_intermediates)
else:
context = None
if x_block.x_block_self_attn:
x_q2, x_k2, x_v2 = x_qkv2
attn2 = attention(x_q2, x_k2, x_v2, x_block.attn2.num_heads)
x = x_block.post_attention_x(x_attn, attn2, *x_intermediates)
else:
x = x_block.post_attention(x_attn, *x_intermediates)
return context, x
class JointBlock(nn.Module):
"""just a small wrapper to serve as a fsdp unit"""
def __init__(self, *args, **kwargs):
super().__init__()
pre_only = kwargs.pop("pre_only")
qk_norm = kwargs.pop("qk_norm", None)
x_block_self_attn = kwargs.pop("x_block_self_attn", False)
self.context_block = DismantledBlock(
*args, pre_only=pre_only, qk_norm=qk_norm, **kwargs
)
self.x_block = DismantledBlock(
*args,
pre_only=False,
qk_norm=qk_norm,
x_block_self_attn=x_block_self_attn,
**kwargs,
)
def forward(self, *args, **kwargs):
return block_mixing(
*args, context_block=self.context_block, x_block=self.x_block, **kwargs
)
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(
self,
hidden_size: int,
patch_size: int,
out_channels: int,
total_out_channels: Optional[int] = None,
dtype=None,
device=None,
):
super().__init__()
self.norm_final = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device
)
self.linear = (
nn.Linear(
hidden_size,
patch_size * patch_size * out_channels,
bias=True,
dtype=dtype,
device=device,
)
if (total_out_channels is None)
else nn.Linear(
hidden_size, total_out_channels, bias=True, dtype=dtype, device=device
)
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(
hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device
),
)
def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class MMDiTX(nn.Module):
"""Diffusion model with a Transformer backbone."""
def __init__(
self,
input_size: int = 32,
patch_size: int = 2,
in_channels: int = 4,
depth: int = 28,
mlp_ratio: float = 4.0,
learn_sigma: bool = False,
adm_in_channels: Optional[int] = None,
context_embedder_config: Optional[Dict] = None,
register_length: int = 0,
rmsnorm: bool = False,
scale_mod_only: bool = False,
swiglu: bool = False,
out_channels: Optional[int] = None,
pos_embed_scaling_factor: Optional[float] = None,
pos_embed_offset: Optional[float] = None,
pos_embed_max_size: Optional[int] = None,
num_patches=None,
qk_norm: Optional[str] = None,
x_block_self_attn_layers: Optional[List[int]] = [],
qkv_bias: bool = True,
dtype=None,
device=None,
verbose=False,
):
super().__init__()
if verbose:
print(
f"mmdit initializing with: {input_size=}, {patch_size=}, {in_channels=}, {depth=}, {mlp_ratio=}, {learn_sigma=}, {adm_in_channels=}, {context_embedder_config=}, {register_length=}, {rmsnorm=}, {scale_mod_only=}, {swiglu=}, {out_channels=}, {pos_embed_scaling_factor=}, {pos_embed_offset=}, {pos_embed_max_size=}, {num_patches=}, {qk_norm=}, {qkv_bias=}, {dtype=}, {device=}"
)
self.dtype = dtype
self.learn_sigma = learn_sigma
self.in_channels = in_channels
default_out_channels = in_channels * 2 if learn_sigma else in_channels
self.out_channels = (
out_channels if out_channels is not None else default_out_channels
)
self.patch_size = patch_size
self.pos_embed_scaling_factor = pos_embed_scaling_factor
self.pos_embed_offset = pos_embed_offset
self.pos_embed_max_size = pos_embed_max_size
self.x_block_self_attn_layers = x_block_self_attn_layers
# apply magic --> this defines a head_size of 64
hidden_size = 64 * depth
num_heads = depth
self.num_heads = num_heads
self.x_embedder = PatchEmbed(
input_size,
patch_size,
in_channels,
hidden_size,
bias=True,
strict_img_size=self.pos_embed_max_size is None,
dtype=dtype,
device=device,
)
self.t_embedder = TimestepEmbedder(hidden_size, dtype=dtype, device=device)
if adm_in_channels is not None:
assert isinstance(adm_in_channels, int)
self.y_embedder = VectorEmbedder(
adm_in_channels, hidden_size, dtype=dtype, device=device
)
self.context_embedder = nn.Identity()
if context_embedder_config is not None:
if context_embedder_config["target"] == "torch.nn.Linear":
self.context_embedder = nn.Linear(
**context_embedder_config["params"], dtype=dtype, device=device
)
self.register_length = register_length
if self.register_length > 0:
self.register = nn.Parameter(
torch.randn(1, register_length, hidden_size, dtype=dtype, device=device)
)
# num_patches = self.x_embedder.num_patches
# Will use fixed sin-cos embedding:
# just use a buffer already
if num_patches is not None:
self.register_buffer(
"pos_embed",
torch.zeros(1, num_patches, hidden_size, dtype=dtype, device=device),
)
else:
self.pos_embed = None
self.joint_blocks = nn.ModuleList(
[
JointBlock(
hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
pre_only=i == depth - 1,
rmsnorm=rmsnorm,
scale_mod_only=scale_mod_only,
swiglu=swiglu,
qk_norm=qk_norm,
x_block_self_attn=(i in self.x_block_self_attn_layers),
dtype=dtype,
device=device,
)
for i in range(depth)
]
)
self.final_layer = FinalLayer(
hidden_size, patch_size, self.out_channels, dtype=dtype, device=device
)
def cropped_pos_embed(self, hw):
assert self.pos_embed_max_size is not None
p = self.x_embedder.patch_size[0]
h, w = hw
# patched size
h = h // p
w = w // p
assert h <= self.pos_embed_max_size, (h, self.pos_embed_max_size)
assert w <= self.pos_embed_max_size, (w, self.pos_embed_max_size)
top = (self.pos_embed_max_size - h) // 2
left = (self.pos_embed_max_size - w) // 2
spatial_pos_embed = rearrange(
self.pos_embed,
"1 (h w) c -> 1 h w c",
h=self.pos_embed_max_size,
w=self.pos_embed_max_size,
)
spatial_pos_embed = spatial_pos_embed[:, top : top + h, left : left + w, :]
spatial_pos_embed = rearrange(spatial_pos_embed, "1 h w c -> 1 (h w) c")
return spatial_pos_embed
def unpatchify(self, x, hw=None):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, C, H, W)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
if hw is None:
h = w = int(x.shape[1] ** 0.5)
else:
h, w = hw
h = h // p
w = w // p
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum("nhwpqc->nchpwq", x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
return imgs
def forward_core_with_concat(
self,
x: torch.Tensor,
c_mod: torch.Tensor,
context: Optional[torch.Tensor] = None,
skip_layers: Optional[List] = [],
controlnet_hidden_states: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if self.register_length > 0:
context = torch.cat(
(
repeat(self.register, "1 ... -> b ...", b=x.shape[0]),
context if context is not None else torch.Tensor([]).type_as(x),
),
1,
)
# context is B, L', D
# x is B, L, D
for i, block in enumerate(self.joint_blocks):
if i in skip_layers:
continue
context, x = block(context, x, c=c_mod)
if controlnet_hidden_states is not None:
controlnet_block_interval = len(self.joint_blocks) // len(
controlnet_hidden_states
)
x = x + controlnet_hidden_states[i // controlnet_block_interval]
x = self.final_layer(x, c_mod) # (N, T, patch_size ** 2 * out_channels)
return x
def forward(
self,
x: torch.Tensor,
t: torch.Tensor,
y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
controlnet_hidden_states: Optional[torch.Tensor] = None,
skip_layers: Optional[List] = [],
) -> torch.Tensor:
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
hw = x.shape[-2:]
x = self.x_embedder(x) + self.cropped_pos_embed(hw)
c = self.t_embedder(t, dtype=x.dtype) # (N, D)
if y is not None:
y = self.y_embedder(y) # (N, D)
c = c + y # (N, D)
context = self.context_embedder(context)
x = self.forward_core_with_concat(x, c, context, skip_layers, controlnet_hidden_states)
x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W)
return x