forked from DmitryUlyanov/texture_nets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInstanceNormalization.lua
98 lines (74 loc) · 3 KB
/
InstanceNormalization.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
require 'nn'
_ = [[
An implementation for https://arxiv.org/abs/1607.08022
]]
local InstanceNormalization, parent = torch.class('nn.InstanceNormalization', 'nn.Module')
function InstanceNormalization:__init(nOutput, eps, momentum, affine)
parent.__init(self)
self.running_mean = torch.zeros(nOutput)
self.running_var = torch.ones(nOutput)
self.eps = eps or 1e-5
self.momentum = momentum or 0.0
if affine ~= nil then
assert(type(affine) == 'boolean', 'affine has to be true/false')
self.affine = affine
else
self.affine = true
end
self.nOutput = nOutput
self.prev_batch_size = -1
if self.affine then
self.weight = torch.Tensor(nOutput):uniform()
self.bias = torch.Tensor(nOutput):zero()
self.gradWeight = torch.Tensor(nOutput)
self.gradBias = torch.Tensor(nOutput)
end
end
function InstanceNormalization:updateOutput(input)
self.output = self.output or input.new()
assert(input:size(2) == self.nOutput)
local batch_size = input:size(1)
if batch_size ~= self.prev_batch_size or (self.bn and self:type() ~= self.bn:type()) then
self.bn = nn.SpatialBatchNormalization(input:size(1)*input:size(2), self.eps, self.momentum, self.affine)
self.bn:type(self:type())
self.bn.running_mean:copy(self.running_mean:repeatTensor(batch_size))
self.bn.running_var:copy(self.running_var:repeatTensor(batch_size))
self.prev_batch_size = input:size(1)
end
-- Get statistics
self.running_mean:copy(self.bn.running_mean:view(input:size(1),self.nOutput):mean(1))
self.running_var:copy(self.bn.running_var:view(input:size(1),self.nOutput):mean(1))
-- Set params for BN
if self.affine then
self.bn.weight:copy(self.weight:repeatTensor(batch_size))
self.bn.bias:copy(self.bias:repeatTensor(batch_size))
end
local input_1obj = input:contiguous():view(1,input:size(1)*input:size(2),input:size(3),input:size(4))
self.output = self.bn:forward(input_1obj):viewAs(input)
return self.output
end
function InstanceNormalization:updateGradInput(input, gradOutput)
self.gradInput = self.gradInput or gradOutput.new()
assert(self.bn)
local input_1obj = input:contiguous():view(1,input:size(1)*input:size(2),input:size(3),input:size(4))
local gradOutput_1obj = gradOutput:contiguous():view(1,input:size(1)*input:size(2),input:size(3),input:size(4))
if self.affine then
self.bn.gradWeight:zero()
self.bn.gradBias:zero()
end
self.gradInput = self.bn:backward(input_1obj, gradOutput_1obj):viewAs(input)
if self.affine then
self.gradWeight:add(self.bn.gradWeight:view(input:size(1),self.nOutput):sum(1))
self.gradBias:add(self.bn.gradBias:view(input:size(1),self.nOutput):sum(1))
end
return self.gradInput
end
function InstanceNormalization:clearState()
self.output = self.output.new()
self.gradInput = self.gradInput.new()
self.bn:clearState()
end
function InstanceNormalization:evaluate()
end
function InstanceNormalization:training()
end