diff --git a/doc/how_to/benchmark_with_hybrid_recordings.rst b/doc/how_to/benchmark_with_hybrid_recordings.rst new file mode 100644 index 0000000000..9e8c6c7d65 --- /dev/null +++ b/doc/how_to/benchmark_with_hybrid_recordings.rst @@ -0,0 +1,2552 @@ +Benchmark spike sorting with hybrid recordings +============================================== + +This example shows how to use the SpikeInterface hybrid recordings +framework to benchmark spike sorting results. + +Hybrid recordings are built from existing recordings by injecting units +with known spiking activity. The template (aka average waveforms) of the +injected units can be from previous spike sorted data. In this example, +we will be using an open database of templates that we have constructed +from the International Brain Laboratory - Brain Wide Map (available on +`DANDI `__). + +Importantly, recordings from long-shank probes, such as Neuropixels, +usually experience drifts. Such drifts have to be taken into account in +order to smoothly inject spikes into the recording. + +.. code:: ipython3 + + import spikeinterface as si + import spikeinterface.extractors as se + import spikeinterface.preprocessing as spre + import spikeinterface.comparison as sc + import spikeinterface.generation as sgen + import spikeinterface.widgets as sw + + from spikeinterface.sortingcomponents.motion_estimation import estimate_motion + + import numpy as np + import matplotlib.pyplot as plt + from pathlib import Path + +.. code:: ipython3 + + %matplotlib inline + +.. code:: ipython3 + + si.set_global_job_kwargs(n_jobs=16) + +For this notebook, we will use a drifting recording similar to the one +acquired by Nick Steinmetz and available +`here `__, where an +triangular motion was imposed to the recording by moving the probe up +and down with a micro-manipulator. + +.. code:: ipython3 + + workdir = Path("/ssd980/working/hybrid/steinmetz_imposed_motion") + workdir.mkdir(exist_ok=True) + +.. code:: ipython3 + + recording_np1_imposed = se.read_spikeglx("/hdd1/data/spikeglx/nick-steinmetz/dataset1/p1_g0_t0/") + recording_preproc = spre.highpass_filter(recording_np1_imposed) + recording_preproc = spre.common_reference(recording_preproc) + +To visualize the drift, we can estimate the motion and plot it: + +.. code:: ipython3 + + # to correct for drift, we need a float dtype + recording_preproc = spre.astype(recording_preproc, "float") + _, motion_info = spre.correct_motion( + recording_preproc, preset="nonrigid_fast_and_accurate", n_jobs=4, progress_bar=True, output_motion_info=True + ) + + + +.. parsed-literal:: + + detect and localize: 0%| | 0/1958 [00:00 {minimum_depth}") + len(templates_selected_info) + + + + +.. parsed-literal:: + + 31 + + + +We can now retrieve the selected templates as a ``Templates`` object: + +.. code:: ipython3 + + templates_selected = sgen.query_templates_from_database(templates_selected_info, verbose=True) + print(templates_selected) + + +.. parsed-literal:: + + Fetching templates from 2 datasets + Templates: 31 units - 240 samples - 384 channels + sampling_frequency=30.00 kHz - ms_before=3.00 ms - ms_after=5.00 ms + Probe - IMEC - Neuropixels 1.0 - 18194814141 - 384ch - 1shanks + + +While we selected templates from a target aread and at certain depths, +we can see that the template amplitudes are quite large. This will make +spike sorting easy… we can further manipulate the ``Templates`` by +rescaling, relocating, or further selections with the +``sgen.scale_template_to_range``, ``sgen.relocate_templates``, and +``sgen.select_templates`` functions. + +In our case, let’s rescale the amplitudes between 50 and 150 +:math:`\mu`\ V and relocate them towards the bottom half of the probe, +where the activity looks interesting! + +.. code:: ipython3 + + min_amplitude = 50 + max_amplitude = 150 + templates_scaled = sgen.scale_template_to_range( + templates=templates_selected, + min_amplitude=min_amplitude, + max_amplitude=max_amplitude + ) + + min_displacement = 1000 + max_displacement = 3000 + templates_relocated = sgen.relocate_templates( + templates=templates_scaled, + min_displacement=min_displacement, + max_displacement=max_displacement + ) + +Let’s plot the selected templates: + +.. code:: ipython3 + + sparsity_plot = si.compute_sparsity(templates_relocated) + fig = plt.figure(figsize=(10, 10)) + w = sw.plot_unit_templates(templates_relocated, sparsity=sparsity_plot, ncols=4, figure=fig) + w.figure.subplots_adjust(wspace=0.5, hspace=0.7) + + + +.. image:: benchmark_with_hybrid_recordings_files/benchmark_with_hybrid_recordings_20_0.png + + +Constructing hybrid recordings +------------------------------ + +We can construct now hybrid recordings with the selected templates. + +We will do this in two ways to show how important it is to account for +drifts when injecting hybrid spikes. + +- For the first recording we will not pass the estimated motion + (``recording_hybrid_ignore_drift``). +- For the second recording, we will pass and account for the estimated + motion (``recording_hybrid_with_drift``). + +.. code:: ipython3 + + recording_hybrid_ignore_drift, sorting_hybrid = sgen.generate_hybrid_recording( + recording=recording_preproc, templates=templates_relocated, seed=2308 + ) + recording_hybrid_ignore_drift + + + + +.. raw:: html + +
InjectTemplatesRecording: 384 channels - 30.0kHz - 1 segments - 58,715,724 samples - 1,957.19s (32.62 minutes) - float64 dtype - 167.99 GiB
Channel IDs
    ['imec0.ap#AP0' 'imec0.ap#AP1' 'imec0.ap#AP2' 'imec0.ap#AP3' + 'imec0.ap#AP4' 'imec0.ap#AP5' 'imec0.ap#AP6' 'imec0.ap#AP7' + 'imec0.ap#AP8' 'imec0.ap#AP9' 'imec0.ap#AP10' 'imec0.ap#AP11' + 'imec0.ap#AP12' 'imec0.ap#AP13' 'imec0.ap#AP14' 'imec0.ap#AP15' + 'imec0.ap#AP16' 'imec0.ap#AP17' 'imec0.ap#AP18' 'imec0.ap#AP19' + 'imec0.ap#AP20' 'imec0.ap#AP21' 'imec0.ap#AP22' 'imec0.ap#AP23' + 'imec0.ap#AP24' 'imec0.ap#AP25' 'imec0.ap#AP26' 'imec0.ap#AP27' + 'imec0.ap#AP28' 'imec0.ap#AP29' 'imec0.ap#AP30' 'imec0.ap#AP31' + 'imec0.ap#AP32' 'imec0.ap#AP33' 'imec0.ap#AP34' 'imec0.ap#AP35' + 'imec0.ap#AP36' 'imec0.ap#AP37' 'imec0.ap#AP38' 'imec0.ap#AP39' + 'imec0.ap#AP40' 'imec0.ap#AP41' 'imec0.ap#AP42' 'imec0.ap#AP43' + 'imec0.ap#AP44' 'imec0.ap#AP45' 'imec0.ap#AP46' 'imec0.ap#AP47' + 'imec0.ap#AP48' 'imec0.ap#AP49' 'imec0.ap#AP50' 'imec0.ap#AP51' + 'imec0.ap#AP52' 'imec0.ap#AP53' 'imec0.ap#AP54' 'imec0.ap#AP55' + 'imec0.ap#AP56' 'imec0.ap#AP57' 'imec0.ap#AP58' 'imec0.ap#AP59' + 'imec0.ap#AP60' 'imec0.ap#AP61' 'imec0.ap#AP62' 'imec0.ap#AP63' + 'imec0.ap#AP64' 'imec0.ap#AP65' 'imec0.ap#AP66' 'imec0.ap#AP67' + 'imec0.ap#AP68' 'imec0.ap#AP69' 'imec0.ap#AP70' 'imec0.ap#AP71' + 'imec0.ap#AP72' 'imec0.ap#AP73' 'imec0.ap#AP74' 'imec0.ap#AP75' + 'imec0.ap#AP76' 'imec0.ap#AP77' 'imec0.ap#AP78' 'imec0.ap#AP79' + 'imec0.ap#AP80' 'imec0.ap#AP81' 'imec0.ap#AP82' 'imec0.ap#AP83' + 'imec0.ap#AP84' 'imec0.ap#AP85' 'imec0.ap#AP86' 'imec0.ap#AP87' + 'imec0.ap#AP88' 'imec0.ap#AP89' 'imec0.ap#AP90' 'imec0.ap#AP91' + 'imec0.ap#AP92' 'imec0.ap#AP93' 'imec0.ap#AP94' 'imec0.ap#AP95' + 'imec0.ap#AP96' 'imec0.ap#AP97' 'imec0.ap#AP98' 'imec0.ap#AP99' + 'imec0.ap#AP100' 'imec0.ap#AP101' 'imec0.ap#AP102' 'imec0.ap#AP103' + 'imec0.ap#AP104' 'imec0.ap#AP105' 'imec0.ap#AP106' 'imec0.ap#AP107' + 'imec0.ap#AP108' 'imec0.ap#AP109' 'imec0.ap#AP110' 'imec0.ap#AP111' + 'imec0.ap#AP112' 'imec0.ap#AP113' 'imec0.ap#AP114' 'imec0.ap#AP115' + 'imec0.ap#AP116' 'imec0.ap#AP117' 'imec0.ap#AP118' 'imec0.ap#AP119' + 'imec0.ap#AP120' 'imec0.ap#AP121' 'imec0.ap#AP122' 'imec0.ap#AP123' + 'imec0.ap#AP124' 'imec0.ap#AP125' 'imec0.ap#AP126' 'imec0.ap#AP127' + 'imec0.ap#AP128' 'imec0.ap#AP129' 'imec0.ap#AP130' 'imec0.ap#AP131' + 'imec0.ap#AP132' 'imec0.ap#AP133' 'imec0.ap#AP134' 'imec0.ap#AP135' + 'imec0.ap#AP136' 'imec0.ap#AP137' 'imec0.ap#AP138' 'imec0.ap#AP139' + 'imec0.ap#AP140' 'imec0.ap#AP141' 'imec0.ap#AP142' 'imec0.ap#AP143' + 'imec0.ap#AP144' 'imec0.ap#AP145' 'imec0.ap#AP146' 'imec0.ap#AP147' + 'imec0.ap#AP148' 'imec0.ap#AP149' 'imec0.ap#AP150' 'imec0.ap#AP151' + 'imec0.ap#AP152' 'imec0.ap#AP153' 'imec0.ap#AP154' 'imec0.ap#AP155' + 'imec0.ap#AP156' 'imec0.ap#AP157' 'imec0.ap#AP158' 'imec0.ap#AP159' + 'imec0.ap#AP160' 'imec0.ap#AP161' 'imec0.ap#AP162' 'imec0.ap#AP163' + 'imec0.ap#AP164' 'imec0.ap#AP165' 'imec0.ap#AP166' 'imec0.ap#AP167' + 'imec0.ap#AP168' 'imec0.ap#AP169' 'imec0.ap#AP170' 'imec0.ap#AP171' + 'imec0.ap#AP172' 'imec0.ap#AP173' 'imec0.ap#AP174' 'imec0.ap#AP175' + 'imec0.ap#AP176' 'imec0.ap#AP177' 'imec0.ap#AP178' 'imec0.ap#AP179' + 'imec0.ap#AP180' 'imec0.ap#AP181' 'imec0.ap#AP182' 'imec0.ap#AP183' + 'imec0.ap#AP184' 'imec0.ap#AP185' 'imec0.ap#AP186' 'imec0.ap#AP187' + 'imec0.ap#AP188' 'imec0.ap#AP189' 'imec0.ap#AP190' 'imec0.ap#AP191' + 'imec0.ap#AP192' 'imec0.ap#AP193' 'imec0.ap#AP194' 'imec0.ap#AP195' + 'imec0.ap#AP196' 'imec0.ap#AP197' 'imec0.ap#AP198' 'imec0.ap#AP199' + 'imec0.ap#AP200' 'imec0.ap#AP201' 'imec0.ap#AP202' 'imec0.ap#AP203' + 'imec0.ap#AP204' 'imec0.ap#AP205' 'imec0.ap#AP206' 'imec0.ap#AP207' + 'imec0.ap#AP208' 'imec0.ap#AP209' 'imec0.ap#AP210' 'imec0.ap#AP211' + 'imec0.ap#AP212' 'imec0.ap#AP213' 'imec0.ap#AP214' 'imec0.ap#AP215' + 'imec0.ap#AP216' 'imec0.ap#AP217' 'imec0.ap#AP218' 'imec0.ap#AP219' + 'imec0.ap#AP220' 'imec0.ap#AP221' 'imec0.ap#AP222' 'imec0.ap#AP223' + 'imec0.ap#AP224' 'imec0.ap#AP225' 'imec0.ap#AP226' 'imec0.ap#AP227' + 'imec0.ap#AP228' 'imec0.ap#AP229' 'imec0.ap#AP230' 'imec0.ap#AP231' + 'imec0.ap#AP232' 'imec0.ap#AP233' 'imec0.ap#AP234' 'imec0.ap#AP235' + 'imec0.ap#AP236' 'imec0.ap#AP237' 'imec0.ap#AP238' 'imec0.ap#AP239' + 'imec0.ap#AP240' 'imec0.ap#AP241' 'imec0.ap#AP242' 'imec0.ap#AP243' + 'imec0.ap#AP244' 'imec0.ap#AP245' 'imec0.ap#AP246' 'imec0.ap#AP247' + 'imec0.ap#AP248' 'imec0.ap#AP249' 'imec0.ap#AP250' 'imec0.ap#AP251' + 'imec0.ap#AP252' 'imec0.ap#AP253' 'imec0.ap#AP254' 'imec0.ap#AP255' + 'imec0.ap#AP256' 'imec0.ap#AP257' 'imec0.ap#AP258' 'imec0.ap#AP259' + 'imec0.ap#AP260' 'imec0.ap#AP261' 'imec0.ap#AP262' 'imec0.ap#AP263' + 'imec0.ap#AP264' 'imec0.ap#AP265' 'imec0.ap#AP266' 'imec0.ap#AP267' + 'imec0.ap#AP268' 'imec0.ap#AP269' 'imec0.ap#AP270' 'imec0.ap#AP271' + 'imec0.ap#AP272' 'imec0.ap#AP273' 'imec0.ap#AP274' 'imec0.ap#AP275' + 'imec0.ap#AP276' 'imec0.ap#AP277' 'imec0.ap#AP278' 'imec0.ap#AP279' + 'imec0.ap#AP280' 'imec0.ap#AP281' 'imec0.ap#AP282' 'imec0.ap#AP283' + 'imec0.ap#AP284' 'imec0.ap#AP285' 'imec0.ap#AP286' 'imec0.ap#AP287' + 'imec0.ap#AP288' 'imec0.ap#AP289' 'imec0.ap#AP290' 'imec0.ap#AP291' + 'imec0.ap#AP292' 'imec0.ap#AP293' 'imec0.ap#AP294' 'imec0.ap#AP295' + 'imec0.ap#AP296' 'imec0.ap#AP297' 'imec0.ap#AP298' 'imec0.ap#AP299' + 'imec0.ap#AP300' 'imec0.ap#AP301' 'imec0.ap#AP302' 'imec0.ap#AP303' + 'imec0.ap#AP304' 'imec0.ap#AP305' 'imec0.ap#AP306' 'imec0.ap#AP307' + 'imec0.ap#AP308' 'imec0.ap#AP309' 'imec0.ap#AP310' 'imec0.ap#AP311' + 'imec0.ap#AP312' 'imec0.ap#AP313' 'imec0.ap#AP314' 'imec0.ap#AP315' + 'imec0.ap#AP316' 'imec0.ap#AP317' 'imec0.ap#AP318' 'imec0.ap#AP319' + 'imec0.ap#AP320' 'imec0.ap#AP321' 'imec0.ap#AP322' 'imec0.ap#AP323' + 'imec0.ap#AP324' 'imec0.ap#AP325' 'imec0.ap#AP326' 'imec0.ap#AP327' + 'imec0.ap#AP328' 'imec0.ap#AP329' 'imec0.ap#AP330' 'imec0.ap#AP331' + 'imec0.ap#AP332' 'imec0.ap#AP333' 'imec0.ap#AP334' 'imec0.ap#AP335' + 'imec0.ap#AP336' 'imec0.ap#AP337' 'imec0.ap#AP338' 'imec0.ap#AP339' + 'imec0.ap#AP340' 'imec0.ap#AP341' 'imec0.ap#AP342' 'imec0.ap#AP343' + 'imec0.ap#AP344' 'imec0.ap#AP345' 'imec0.ap#AP346' 'imec0.ap#AP347' + 'imec0.ap#AP348' 'imec0.ap#AP349' 'imec0.ap#AP350' 'imec0.ap#AP351' + 'imec0.ap#AP352' 'imec0.ap#AP353' 'imec0.ap#AP354' 'imec0.ap#AP355' + 'imec0.ap#AP356' 'imec0.ap#AP357' 'imec0.ap#AP358' 'imec0.ap#AP359' + 'imec0.ap#AP360' 'imec0.ap#AP361' 'imec0.ap#AP362' 'imec0.ap#AP363' + 'imec0.ap#AP364' 'imec0.ap#AP365' 'imec0.ap#AP366' 'imec0.ap#AP367' + 'imec0.ap#AP368' 'imec0.ap#AP369' 'imec0.ap#AP370' 'imec0.ap#AP371' + 'imec0.ap#AP372' 'imec0.ap#AP373' 'imec0.ap#AP374' 'imec0.ap#AP375' + 'imec0.ap#AP376' 'imec0.ap#AP377' 'imec0.ap#AP378' 'imec0.ap#AP379' + 'imec0.ap#AP380' 'imec0.ap#AP381' 'imec0.ap#AP382' 'imec0.ap#AP383']
Annotations
  • is_filtered : True
  • probe_0_planar_contour : [[ -11 9989] + [ -11 -11] + [ 24 -186] + [ 59 -11] + [ 59 9989]]
  • probes_info : [{'model_name': 'Neuropixels 1.0', 'manufacturer': 'IMEC', 'probe_type': '0', 'serial_number': '18408406612', 'part_number': 'PRB_1_4_0480_1_C', 'port': '1', 'slot': '2'}]
Channel Properties
    gain_to_uV [2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375]
    offset_to_uV [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
    channel_names ['AP0' 'AP1' 'AP2' 'AP3' 'AP4' 'AP5' 'AP6' 'AP7' 'AP8' 'AP9' 'AP10' 'AP11' + 'AP12' 'AP13' 'AP14' 'AP15' 'AP16' 'AP17' 'AP18' 'AP19' 'AP20' 'AP21' + 'AP22' 'AP23' 'AP24' 'AP25' 'AP26' 'AP27' 'AP28' 'AP29' 'AP30' 'AP31' + 'AP32' 'AP33' 'AP34' 'AP35' 'AP36' 'AP37' 'AP38' 'AP39' 'AP40' 'AP41' + 'AP42' 'AP43' 'AP44' 'AP45' 'AP46' 'AP47' 'AP48' 'AP49' 'AP50' 'AP51' + 'AP52' 'AP53' 'AP54' 'AP55' 'AP56' 'AP57' 'AP58' 'AP59' 'AP60' 'AP61' + 'AP62' 'AP63' 'AP64' 'AP65' 'AP66' 'AP67' 'AP68' 'AP69' 'AP70' 'AP71' + 'AP72' 'AP73' 'AP74' 'AP75' 'AP76' 'AP77' 'AP78' 'AP79' 'AP80' 'AP81' + 'AP82' 'AP83' 'AP84' 'AP85' 'AP86' 'AP87' 'AP88' 'AP89' 'AP90' 'AP91' + 'AP92' 'AP93' 'AP94' 'AP95' 'AP96' 'AP97' 'AP98' 'AP99' 'AP100' 'AP101' + 'AP102' 'AP103' 'AP104' 'AP105' 'AP106' 'AP107' 'AP108' 'AP109' 'AP110' + 'AP111' 'AP112' 'AP113' 'AP114' 'AP115' 'AP116' 'AP117' 'AP118' 'AP119' + 'AP120' 'AP121' 'AP122' 'AP123' 'AP124' 'AP125' 'AP126' 'AP127' 'AP128' + 'AP129' 'AP130' 'AP131' 'AP132' 'AP133' 'AP134' 'AP135' 'AP136' 'AP137' + 'AP138' 'AP139' 'AP140' 'AP141' 'AP142' 'AP143' 'AP144' 'AP145' 'AP146' + 'AP147' 'AP148' 'AP149' 'AP150' 'AP151' 'AP152' 'AP153' 'AP154' 'AP155' + 'AP156' 'AP157' 'AP158' 'AP159' 'AP160' 'AP161' 'AP162' 'AP163' 'AP164' + 'AP165' 'AP166' 'AP167' 'AP168' 'AP169' 'AP170' 'AP171' 'AP172' 'AP173' + 'AP174' 'AP175' 'AP176' 'AP177' 'AP178' 'AP179' 'AP180' 'AP181' 'AP182' + 'AP183' 'AP184' 'AP185' 'AP186' 'AP187' 'AP188' 'AP189' 'AP190' 'AP191' + 'AP192' 'AP193' 'AP194' 'AP195' 'AP196' 'AP197' 'AP198' 'AP199' 'AP200' + 'AP201' 'AP202' 'AP203' 'AP204' 'AP205' 'AP206' 'AP207' 'AP208' 'AP209' + 'AP210' 'AP211' 'AP212' 'AP213' 'AP214' 'AP215' 'AP216' 'AP217' 'AP218' + 'AP219' 'AP220' 'AP221' 'AP222' 'AP223' 'AP224' 'AP225' 'AP226' 'AP227' + 'AP228' 'AP229' 'AP230' 'AP231' 'AP232' 'AP233' 'AP234' 'AP235' 'AP236' + 'AP237' 'AP238' 'AP239' 'AP240' 'AP241' 'AP242' 'AP243' 'AP244' 'AP245' + 'AP246' 'AP247' 'AP248' 'AP249' 'AP250' 'AP251' 'AP252' 'AP253' 'AP254' + 'AP255' 'AP256' 'AP257' 'AP258' 'AP259' 'AP260' 'AP261' 'AP262' 'AP263' + 'AP264' 'AP265' 'AP266' 'AP267' 'AP268' 'AP269' 'AP270' 'AP271' 'AP272' + 'AP273' 'AP274' 'AP275' 'AP276' 'AP277' 'AP278' 'AP279' 'AP280' 'AP281' + 'AP282' 'AP283' 'AP284' 'AP285' 'AP286' 'AP287' 'AP288' 'AP289' 'AP290' + 'AP291' 'AP292' 'AP293' 'AP294' 'AP295' 'AP296' 'AP297' 'AP298' 'AP299' + 'AP300' 'AP301' 'AP302' 'AP303' 'AP304' 'AP305' 'AP306' 'AP307' 'AP308' + 'AP309' 'AP310' 'AP311' 'AP312' 'AP313' 'AP314' 'AP315' 'AP316' 'AP317' + 'AP318' 'AP319' 'AP320' 'AP321' 'AP322' 'AP323' 'AP324' 'AP325' 'AP326' + 'AP327' 'AP328' 'AP329' 'AP330' 'AP331' 'AP332' 'AP333' 'AP334' 'AP335' + 'AP336' 'AP337' 'AP338' 'AP339' 'AP340' 'AP341' 'AP342' 'AP343' 'AP344' + 'AP345' 'AP346' 'AP347' 'AP348' 'AP349' 'AP350' 'AP351' 'AP352' 'AP353' + 'AP354' 'AP355' 'AP356' 'AP357' 'AP358' 'AP359' 'AP360' 'AP361' 'AP362' + 'AP363' 'AP364' 'AP365' 'AP366' 'AP367' 'AP368' 'AP369' 'AP370' 'AP371' + 'AP372' 'AP373' 'AP374' 'AP375' 'AP376' 'AP377' 'AP378' 'AP379' 'AP380' + 'AP381' 'AP382' 'AP383']
    contact_vector [(0, 16., 0., 'square', 12., '', 'e0', 0, 'um', 1., 0., 0., 1., 0, 0, 0, 500, 250, 1) + (0, 48., 0., 'square', 12., '', 'e1', 1, 'um', 1., 0., 0., 1., 1, 0, 0, 500, 250, 1) + (0, 0., 20., 'square', 12., '', 'e2', 2, 'um', 1., 0., 0., 1., 2, 0, 0, 500, 250, 1) + (0, 32., 20., 'square', 12., '', 'e3', 3, 'um', 1., 0., 0., 1., 3, 0, 0, 500, 250, 1) + (0, 16., 40., 'square', 12., '', 'e4', 4, 'um', 1., 0., 0., 1., 4, 0, 0, 500, 250, 1) + (0, 48., 40., 'square', 12., '', 'e5', 5, 'um', 1., 0., 0., 1., 5, 0, 0, 500, 250, 1) + (0, 0., 60., 'square', 12., '', 'e6', 6, 'um', 1., 0., 0., 1., 6, 0, 0, 500, 250, 1) + (0, 32., 60., 'square', 12., '', 'e7', 7, 'um', 1., 0., 0., 1., 7, 0, 0, 500, 250, 1) + (0, 16., 80., 'square', 12., '', 'e8', 8, 'um', 1., 0., 0., 1., 8, 0, 0, 500, 250, 1) + (0, 48., 80., 'square', 12., '', 'e9', 9, 'um', 1., 0., 0., 1., 9, 0, 0, 500, 250, 1) + (0, 0., 100., 'square', 12., '', 'e10', 10, 'um', 1., 0., 0., 1., 10, 0, 0, 500, 250, 1) + (0, 32., 100., 'square', 12., '', 'e11', 11, 'um', 1., 0., 0., 1., 11, 0, 0, 500, 250, 1) + (0, 16., 120., 'square', 12., '', 'e12', 12, 'um', 1., 0., 0., 1., 12, 0, 0, 500, 250, 1) + (0, 48., 120., 'square', 12., '', 'e13', 13, 'um', 1., 0., 0., 1., 13, 0, 0, 500, 250, 1) + (0, 0., 140., 'square', 12., '', 'e14', 14, 'um', 1., 0., 0., 1., 14, 0, 0, 500, 250, 1) + (0, 32., 140., 'square', 12., '', 'e15', 15, 'um', 1., 0., 0., 1., 15, 0, 0, 500, 250, 1) + (0, 16., 160., 'square', 12., '', 'e16', 16, 'um', 1., 0., 0., 1., 16, 0, 0, 500, 250, 1) + (0, 48., 160., 'square', 12., '', 'e17', 17, 'um', 1., 0., 0., 1., 17, 0, 0, 500, 250, 1) + (0, 0., 180., 'square', 12., '', 'e18', 18, 'um', 1., 0., 0., 1., 18, 0, 0, 500, 250, 1) + (0, 32., 180., 'square', 12., '', 'e19', 19, 'um', 1., 0., 0., 1., 19, 0, 0, 500, 250, 1) + (0, 16., 200., 'square', 12., '', 'e20', 20, 'um', 1., 0., 0., 1., 20, 0, 0, 500, 250, 1) + (0, 48., 200., 'square', 12., '', 'e21', 21, 'um', 1., 0., 0., 1., 21, 0, 0, 500, 250, 1) + (0, 0., 220., 'square', 12., '', 'e22', 22, 'um', 1., 0., 0., 1., 22, 0, 0, 500, 250, 1) + (0, 32., 220., 'square', 12., '', 'e23', 23, 'um', 1., 0., 0., 1., 23, 0, 0, 500, 250, 1) + (0, 16., 240., 'square', 12., '', 'e24', 24, 'um', 1., 0., 0., 1., 24, 0, 0, 500, 250, 1) + (0, 48., 240., 'square', 12., '', 'e25', 25, 'um', 1., 0., 0., 1., 25, 0, 0, 500, 250, 1) + (0, 0., 260., 'square', 12., '', 'e26', 26, 'um', 1., 0., 0., 1., 26, 0, 0, 500, 250, 1) + (0, 32., 260., 'square', 12., '', 'e27', 27, 'um', 1., 0., 0., 1., 27, 0, 0, 500, 250, 1) + (0, 16., 280., 'square', 12., '', 'e28', 28, 'um', 1., 0., 0., 1., 28, 0, 0, 500, 250, 1) + (0, 48., 280., 'square', 12., '', 'e29', 29, 'um', 1., 0., 0., 1., 29, 0, 0, 500, 250, 1) + (0, 0., 300., 'square', 12., '', 'e30', 30, 'um', 1., 0., 0., 1., 30, 0, 0, 500, 250, 1) + (0, 32., 300., 'square', 12., '', 'e31', 31, 'um', 1., 0., 0., 1., 31, 0, 0, 500, 250, 1) + (0, 16., 320., 'square', 12., '', 'e32', 32, 'um', 1., 0., 0., 1., 32, 0, 0, 500, 250, 1) + (0, 48., 320., 'square', 12., '', 'e33', 33, 'um', 1., 0., 0., 1., 33, 0, 0, 500, 250, 1) + (0, 0., 340., 'square', 12., '', 'e34', 34, 'um', 1., 0., 0., 1., 34, 0, 0, 500, 250, 1) + (0, 32., 340., 'square', 12., '', 'e35', 35, 'um', 1., 0., 0., 1., 35, 0, 0, 500, 250, 1) + (0, 16., 360., 'square', 12., '', 'e36', 36, 'um', 1., 0., 0., 1., 36, 0, 0, 500, 250, 1) + (0, 48., 360., 'square', 12., '', 'e37', 37, 'um', 1., 0., 0., 1., 37, 0, 0, 500, 250, 1) + (0, 0., 380., 'square', 12., '', 'e38', 38, 'um', 1., 0., 0., 1., 38, 0, 0, 500, 250, 1) + (0, 32., 380., 'square', 12., '', 'e39', 39, 'um', 1., 0., 0., 1., 39, 0, 0, 500, 250, 1) + (0, 16., 400., 'square', 12., '', 'e40', 40, 'um', 1., 0., 0., 1., 40, 0, 0, 500, 250, 1) + (0, 48., 400., 'square', 12., '', 'e41', 41, 'um', 1., 0., 0., 1., 41, 0, 0, 500, 250, 1) + (0, 0., 420., 'square', 12., '', 'e42', 42, 'um', 1., 0., 0., 1., 42, 0, 0, 500, 250, 1) + (0, 32., 420., 'square', 12., '', 'e43', 43, 'um', 1., 0., 0., 1., 43, 0, 0, 500, 250, 1) + (0, 16., 440., 'square', 12., '', 'e44', 44, 'um', 1., 0., 0., 1., 44, 0, 0, 500, 250, 1) + (0, 48., 440., 'square', 12., '', 'e45', 45, 'um', 1., 0., 0., 1., 45, 0, 0, 500, 250, 1) + (0, 0., 460., 'square', 12., '', 'e46', 46, 'um', 1., 0., 0., 1., 46, 0, 0, 500, 250, 1) + (0, 32., 460., 'square', 12., '', 'e47', 47, 'um', 1., 0., 0., 1., 47, 0, 0, 500, 250, 1) + (0, 16., 480., 'square', 12., '', 'e48', 48, 'um', 1., 0., 0., 1., 48, 0, 0, 500, 250, 1) + (0, 48., 480., 'square', 12., '', 'e49', 49, 'um', 1., 0., 0., 1., 49, 0, 0, 500, 250, 1) + (0, 0., 500., 'square', 12., '', 'e50', 50, 'um', 1., 0., 0., 1., 50, 0, 0, 500, 250, 1) + (0, 32., 500., 'square', 12., '', 'e51', 51, 'um', 1., 0., 0., 1., 51, 0, 0, 500, 250, 1) + (0, 16., 520., 'square', 12., '', 'e52', 52, 'um', 1., 0., 0., 1., 52, 0, 0, 500, 250, 1) + (0, 48., 520., 'square', 12., '', 'e53', 53, 'um', 1., 0., 0., 1., 53, 0, 0, 500, 250, 1) + (0, 0., 540., 'square', 12., '', 'e54', 54, 'um', 1., 0., 0., 1., 54, 0, 0, 500, 250, 1) + (0, 32., 540., 'square', 12., '', 'e55', 55, 'um', 1., 0., 0., 1., 55, 0, 0, 500, 250, 1) + (0, 16., 560., 'square', 12., '', 'e56', 56, 'um', 1., 0., 0., 1., 56, 0, 0, 500, 250, 1) + (0, 48., 560., 'square', 12., '', 'e57', 57, 'um', 1., 0., 0., 1., 57, 0, 0, 500, 250, 1) + (0, 0., 580., 'square', 12., '', 'e58', 58, 'um', 1., 0., 0., 1., 58, 0, 0, 500, 250, 1) + (0, 32., 580., 'square', 12., '', 'e59', 59, 'um', 1., 0., 0., 1., 59, 0, 0, 500, 250, 1) + (0, 16., 600., 'square', 12., '', 'e60', 60, 'um', 1., 0., 0., 1., 60, 0, 0, 500, 250, 1) + (0, 48., 600., 'square', 12., '', 'e61', 61, 'um', 1., 0., 0., 1., 61, 0, 0, 500, 250, 1) + (0, 0., 620., 'square', 12., '', 'e62', 62, 'um', 1., 0., 0., 1., 62, 0, 0, 500, 250, 1) + (0, 32., 620., 'square', 12., '', 'e63', 63, 'um', 1., 0., 0., 1., 63, 0, 0, 500, 250, 1) + (0, 16., 640., 'square', 12., '', 'e64', 64, 'um', 1., 0., 0., 1., 64, 0, 0, 500, 250, 1) + (0, 48., 640., 'square', 12., '', 'e65', 65, 'um', 1., 0., 0., 1., 65, 0, 0, 500, 250, 1) + (0, 0., 660., 'square', 12., '', 'e66', 66, 'um', 1., 0., 0., 1., 66, 0, 0, 500, 250, 1) + (0, 32., 660., 'square', 12., '', 'e67', 67, 'um', 1., 0., 0., 1., 67, 0, 0, 500, 250, 1) + (0, 16., 680., 'square', 12., '', 'e68', 68, 'um', 1., 0., 0., 1., 68, 0, 0, 500, 250, 1) + (0, 48., 680., 'square', 12., '', 'e69', 69, 'um', 1., 0., 0., 1., 69, 0, 0, 500, 250, 1) + (0, 0., 700., 'square', 12., '', 'e70', 70, 'um', 1., 0., 0., 1., 70, 0, 0, 500, 250, 1) + (0, 32., 700., 'square', 12., '', 'e71', 71, 'um', 1., 0., 0., 1., 71, 0, 0, 500, 250, 1) + (0, 16., 720., 'square', 12., '', 'e72', 72, 'um', 1., 0., 0., 1., 72, 0, 0, 500, 250, 1) + (0, 48., 720., 'square', 12., '', 'e73', 73, 'um', 1., 0., 0., 1., 73, 0, 0, 500, 250, 1) + (0, 0., 740., 'square', 12., '', 'e74', 74, 'um', 1., 0., 0., 1., 74, 0, 0, 500, 250, 1) + (0, 32., 740., 'square', 12., '', 'e75', 75, 'um', 1., 0., 0., 1., 75, 0, 0, 500, 250, 1) + (0, 16., 760., 'square', 12., '', 'e76', 76, 'um', 1., 0., 0., 1., 76, 0, 0, 500, 250, 1) + (0, 48., 760., 'square', 12., '', 'e77', 77, 'um', 1., 0., 0., 1., 77, 0, 0, 500, 250, 1) + (0, 0., 780., 'square', 12., '', 'e78', 78, 'um', 1., 0., 0., 1., 78, 0, 0, 500, 250, 1) + (0, 32., 780., 'square', 12., '', 'e79', 79, 'um', 1., 0., 0., 1., 79, 0, 0, 500, 250, 1) + (0, 16., 800., 'square', 12., '', 'e80', 80, 'um', 1., 0., 0., 1., 80, 0, 0, 500, 250, 1) + (0, 48., 800., 'square', 12., '', 'e81', 81, 'um', 1., 0., 0., 1., 81, 0, 0, 500, 250, 1) + (0, 0., 820., 'square', 12., '', 'e82', 82, 'um', 1., 0., 0., 1., 82, 0, 0, 500, 250, 1) + (0, 32., 820., 'square', 12., '', 'e83', 83, 'um', 1., 0., 0., 1., 83, 0, 0, 500, 250, 1) + (0, 16., 840., 'square', 12., '', 'e84', 84, 'um', 1., 0., 0., 1., 84, 0, 0, 500, 250, 1) + (0, 48., 840., 'square', 12., '', 'e85', 85, 'um', 1., 0., 0., 1., 85, 0, 0, 500, 250, 1) + (0, 0., 860., 'square', 12., '', 'e86', 86, 'um', 1., 0., 0., 1., 86, 0, 0, 500, 250, 1) + (0, 32., 860., 'square', 12., '', 'e87', 87, 'um', 1., 0., 0., 1., 87, 0, 0, 500, 250, 1) + (0, 16., 880., 'square', 12., '', 'e88', 88, 'um', 1., 0., 0., 1., 88, 0, 0, 500, 250, 1) + (0, 48., 880., 'square', 12., '', 'e89', 89, 'um', 1., 0., 0., 1., 89, 0, 0, 500, 250, 1) + (0, 0., 900., 'square', 12., '', 'e90', 90, 'um', 1., 0., 0., 1., 90, 0, 0, 500, 250, 1) + (0, 32., 900., 'square', 12., '', 'e91', 91, 'um', 1., 0., 0., 1., 91, 0, 0, 500, 250, 1) + (0, 16., 920., 'square', 12., '', 'e92', 92, 'um', 1., 0., 0., 1., 92, 0, 0, 500, 250, 1) + (0, 48., 920., 'square', 12., '', 'e93', 93, 'um', 1., 0., 0., 1., 93, 0, 0, 500, 250, 1) + (0, 0., 940., 'square', 12., '', 'e94', 94, 'um', 1., 0., 0., 1., 94, 0, 0, 500, 250, 1) + (0, 32., 940., 'square', 12., '', 'e95', 95, 'um', 1., 0., 0., 1., 95, 0, 0, 500, 250, 1) + (0, 16., 960., 'square', 12., '', 'e96', 96, 'um', 1., 0., 0., 1., 96, 0, 0, 500, 250, 1) + (0, 48., 960., 'square', 12., '', 'e97', 97, 'um', 1., 0., 0., 1., 97, 0, 0, 500, 250, 1) + (0, 0., 980., 'square', 12., '', 'e98', 98, 'um', 1., 0., 0., 1., 98, 0, 0, 500, 250, 1) + (0, 32., 980., 'square', 12., '', 'e99', 99, 'um', 1., 0., 0., 1., 99, 0, 0, 500, 250, 1) + (0, 16., 1000., 'square', 12., '', 'e100', 100, 'um', 1., 0., 0., 1., 100, 0, 0, 500, 250, 1) + (0, 48., 1000., 'square', 12., '', 'e101', 101, 'um', 1., 0., 0., 1., 101, 0, 0, 500, 250, 1) + (0, 0., 1020., 'square', 12., '', 'e102', 102, 'um', 1., 0., 0., 1., 102, 0, 0, 500, 250, 1) + (0, 32., 1020., 'square', 12., '', 'e103', 103, 'um', 1., 0., 0., 1., 103, 0, 0, 500, 250, 1) + (0, 16., 1040., 'square', 12., '', 'e104', 104, 'um', 1., 0., 0., 1., 104, 0, 0, 500, 250, 1) + (0, 48., 1040., 'square', 12., '', 'e105', 105, 'um', 1., 0., 0., 1., 105, 0, 0, 500, 250, 1) + (0, 0., 1060., 'square', 12., '', 'e106', 106, 'um', 1., 0., 0., 1., 106, 0, 0, 500, 250, 1) + (0, 32., 1060., 'square', 12., '', 'e107', 107, 'um', 1., 0., 0., 1., 107, 0, 0, 500, 250, 1) + (0, 16., 1080., 'square', 12., '', 'e108', 108, 'um', 1., 0., 0., 1., 108, 0, 0, 500, 250, 1) + (0, 48., 1080., 'square', 12., '', 'e109', 109, 'um', 1., 0., 0., 1., 109, 0, 0, 500, 250, 1) + (0, 0., 1100., 'square', 12., '', 'e110', 110, 'um', 1., 0., 0., 1., 110, 0, 0, 500, 250, 1) + (0, 32., 1100., 'square', 12., '', 'e111', 111, 'um', 1., 0., 0., 1., 111, 0, 0, 500, 250, 1) + (0, 16., 1120., 'square', 12., '', 'e112', 112, 'um', 1., 0., 0., 1., 112, 0, 0, 500, 250, 1) + (0, 48., 1120., 'square', 12., '', 'e113', 113, 'um', 1., 0., 0., 1., 113, 0, 0, 500, 250, 1) + (0, 0., 1140., 'square', 12., '', 'e114', 114, 'um', 1., 0., 0., 1., 114, 0, 0, 500, 250, 1) + (0, 32., 1140., 'square', 12., '', 'e115', 115, 'um', 1., 0., 0., 1., 115, 0, 0, 500, 250, 1) + (0, 16., 1160., 'square', 12., '', 'e116', 116, 'um', 1., 0., 0., 1., 116, 0, 0, 500, 250, 1) + (0, 48., 1160., 'square', 12., '', 'e117', 117, 'um', 1., 0., 0., 1., 117, 0, 0, 500, 250, 1) + (0, 0., 1180., 'square', 12., '', 'e118', 118, 'um', 1., 0., 0., 1., 118, 0, 0, 500, 250, 1) + (0, 32., 1180., 'square', 12., '', 'e119', 119, 'um', 1., 0., 0., 1., 119, 0, 0, 500, 250, 1) + (0, 16., 1200., 'square', 12., '', 'e120', 120, 'um', 1., 0., 0., 1., 120, 0, 0, 500, 250, 1) + (0, 48., 1200., 'square', 12., '', 'e121', 121, 'um', 1., 0., 0., 1., 121, 0, 0, 500, 250, 1) + (0, 0., 1220., 'square', 12., '', 'e122', 122, 'um', 1., 0., 0., 1., 122, 0, 0, 500, 250, 1) + (0, 32., 1220., 'square', 12., '', 'e123', 123, 'um', 1., 0., 0., 1., 123, 0, 0, 500, 250, 1) + (0, 16., 1240., 'square', 12., '', 'e124', 124, 'um', 1., 0., 0., 1., 124, 0, 0, 500, 250, 1) + (0, 48., 1240., 'square', 12., '', 'e125', 125, 'um', 1., 0., 0., 1., 125, 0, 0, 500, 250, 1) + (0, 0., 1260., 'square', 12., '', 'e126', 126, 'um', 1., 0., 0., 1., 126, 0, 0, 500, 250, 1) + (0, 32., 1260., 'square', 12., '', 'e127', 127, 'um', 1., 0., 0., 1., 127, 0, 0, 500, 250, 1) + (0, 16., 1280., 'square', 12., '', 'e128', 128, 'um', 1., 0., 0., 1., 128, 0, 0, 500, 250, 1) + (0, 48., 1280., 'square', 12., '', 'e129', 129, 'um', 1., 0., 0., 1., 129, 0, 0, 500, 250, 1) + (0, 0., 1300., 'square', 12., '', 'e130', 130, 'um', 1., 0., 0., 1., 130, 0, 0, 500, 250, 1) + (0, 32., 1300., 'square', 12., '', 'e131', 131, 'um', 1., 0., 0., 1., 131, 0, 0, 500, 250, 1) + (0, 16., 1320., 'square', 12., '', 'e132', 132, 'um', 1., 0., 0., 1., 132, 0, 0, 500, 250, 1) + (0, 48., 1320., 'square', 12., '', 'e133', 133, 'um', 1., 0., 0., 1., 133, 0, 0, 500, 250, 1) + (0, 0., 1340., 'square', 12., '', 'e134', 134, 'um', 1., 0., 0., 1., 134, 0, 0, 500, 250, 1) + (0, 32., 1340., 'square', 12., '', 'e135', 135, 'um', 1., 0., 0., 1., 135, 0, 0, 500, 250, 1) + (0, 16., 1360., 'square', 12., '', 'e136', 136, 'um', 1., 0., 0., 1., 136, 0, 0, 500, 250, 1) + (0, 48., 1360., 'square', 12., '', 'e137', 137, 'um', 1., 0., 0., 1., 137, 0, 0, 500, 250, 1) + (0, 0., 1380., 'square', 12., '', 'e138', 138, 'um', 1., 0., 0., 1., 138, 0, 0, 500, 250, 1) + (0, 32., 1380., 'square', 12., '', 'e139', 139, 'um', 1., 0., 0., 1., 139, 0, 0, 500, 250, 1) + (0, 16., 1400., 'square', 12., '', 'e140', 140, 'um', 1., 0., 0., 1., 140, 0, 0, 500, 250, 1) + (0, 48., 1400., 'square', 12., '', 'e141', 141, 'um', 1., 0., 0., 1., 141, 0, 0, 500, 250, 1) + (0, 0., 1420., 'square', 12., '', 'e142', 142, 'um', 1., 0., 0., 1., 142, 0, 0, 500, 250, 1) + (0, 32., 1420., 'square', 12., '', 'e143', 143, 'um', 1., 0., 0., 1., 143, 0, 0, 500, 250, 1) + (0, 16., 1440., 'square', 12., '', 'e144', 144, 'um', 1., 0., 0., 1., 144, 0, 0, 500, 250, 1) + (0, 48., 1440., 'square', 12., '', 'e145', 145, 'um', 1., 0., 0., 1., 145, 0, 0, 500, 250, 1) + (0, 0., 1460., 'square', 12., '', 'e146', 146, 'um', 1., 0., 0., 1., 146, 0, 0, 500, 250, 1) + (0, 32., 1460., 'square', 12., '', 'e147', 147, 'um', 1., 0., 0., 1., 147, 0, 0, 500, 250, 1) + (0, 16., 1480., 'square', 12., '', 'e148', 148, 'um', 1., 0., 0., 1., 148, 0, 0, 500, 250, 1) + (0, 48., 1480., 'square', 12., '', 'e149', 149, 'um', 1., 0., 0., 1., 149, 0, 0, 500, 250, 1) + (0, 0., 1500., 'square', 12., '', 'e150', 150, 'um', 1., 0., 0., 1., 150, 0, 0, 500, 250, 1) + (0, 32., 1500., 'square', 12., '', 'e151', 151, 'um', 1., 0., 0., 1., 151, 0, 0, 500, 250, 1) + (0, 16., 1520., 'square', 12., '', 'e152', 152, 'um', 1., 0., 0., 1., 152, 0, 0, 500, 250, 1) + (0, 48., 1520., 'square', 12., '', 'e153', 153, 'um', 1., 0., 0., 1., 153, 0, 0, 500, 250, 1) + (0, 0., 1540., 'square', 12., '', 'e154', 154, 'um', 1., 0., 0., 1., 154, 0, 0, 500, 250, 1) + (0, 32., 1540., 'square', 12., '', 'e155', 155, 'um', 1., 0., 0., 1., 155, 0, 0, 500, 250, 1) + (0, 16., 1560., 'square', 12., '', 'e156', 156, 'um', 1., 0., 0., 1., 156, 0, 0, 500, 250, 1) + (0, 48., 1560., 'square', 12., '', 'e157', 157, 'um', 1., 0., 0., 1., 157, 0, 0, 500, 250, 1) + (0, 0., 1580., 'square', 12., '', 'e158', 158, 'um', 1., 0., 0., 1., 158, 0, 0, 500, 250, 1) + (0, 32., 1580., 'square', 12., '', 'e159', 159, 'um', 1., 0., 0., 1., 159, 0, 0, 500, 250, 1) + (0, 16., 1600., 'square', 12., '', 'e160', 160, 'um', 1., 0., 0., 1., 160, 0, 0, 500, 250, 1) + (0, 48., 1600., 'square', 12., '', 'e161', 161, 'um', 1., 0., 0., 1., 161, 0, 0, 500, 250, 1) + (0, 0., 1620., 'square', 12., '', 'e162', 162, 'um', 1., 0., 0., 1., 162, 0, 0, 500, 250, 1) + (0, 32., 1620., 'square', 12., '', 'e163', 163, 'um', 1., 0., 0., 1., 163, 0, 0, 500, 250, 1) + (0, 16., 1640., 'square', 12., '', 'e164', 164, 'um', 1., 0., 0., 1., 164, 0, 0, 500, 250, 1) + (0, 48., 1640., 'square', 12., '', 'e165', 165, 'um', 1., 0., 0., 1., 165, 0, 0, 500, 250, 1) + (0, 0., 1660., 'square', 12., '', 'e166', 166, 'um', 1., 0., 0., 1., 166, 0, 0, 500, 250, 1) + (0, 32., 1660., 'square', 12., '', 'e167', 167, 'um', 1., 0., 0., 1., 167, 0, 0, 500, 250, 1) + (0, 16., 1680., 'square', 12., '', 'e168', 168, 'um', 1., 0., 0., 1., 168, 0, 0, 500, 250, 1) + (0, 48., 1680., 'square', 12., '', 'e169', 169, 'um', 1., 0., 0., 1., 169, 0, 0, 500, 250, 1) + (0, 0., 1700., 'square', 12., '', 'e170', 170, 'um', 1., 0., 0., 1., 170, 0, 0, 500, 250, 1) + (0, 32., 1700., 'square', 12., '', 'e171', 171, 'um', 1., 0., 0., 1., 171, 0, 0, 500, 250, 1) + (0, 16., 1720., 'square', 12., '', 'e172', 172, 'um', 1., 0., 0., 1., 172, 0, 0, 500, 250, 1) + (0, 48., 1720., 'square', 12., '', 'e173', 173, 'um', 1., 0., 0., 1., 173, 0, 0, 500, 250, 1) + (0, 0., 1740., 'square', 12., '', 'e174', 174, 'um', 1., 0., 0., 1., 174, 0, 0, 500, 250, 1) + (0, 32., 1740., 'square', 12., '', 'e175', 175, 'um', 1., 0., 0., 1., 175, 0, 0, 500, 250, 1) + (0, 16., 1760., 'square', 12., '', 'e176', 176, 'um', 1., 0., 0., 1., 176, 0, 0, 500, 250, 1) + (0, 48., 1760., 'square', 12., '', 'e177', 177, 'um', 1., 0., 0., 1., 177, 0, 0, 500, 250, 1) + (0, 0., 1780., 'square', 12., '', 'e178', 178, 'um', 1., 0., 0., 1., 178, 0, 0, 500, 250, 1) + (0, 32., 1780., 'square', 12., '', 'e179', 179, 'um', 1., 0., 0., 1., 179, 0, 0, 500, 250, 1) + (0, 16., 1800., 'square', 12., '', 'e180', 180, 'um', 1., 0., 0., 1., 180, 0, 0, 500, 250, 1) + (0, 48., 1800., 'square', 12., '', 'e181', 181, 'um', 1., 0., 0., 1., 181, 0, 0, 500, 250, 1) + (0, 0., 1820., 'square', 12., '', 'e182', 182, 'um', 1., 0., 0., 1., 182, 0, 0, 500, 250, 1) + (0, 32., 1820., 'square', 12., '', 'e183', 183, 'um', 1., 0., 0., 1., 183, 0, 0, 500, 250, 1) + (0, 16., 1840., 'square', 12., '', 'e184', 184, 'um', 1., 0., 0., 1., 184, 0, 0, 500, 250, 1) + (0, 48., 1840., 'square', 12., '', 'e185', 185, 'um', 1., 0., 0., 1., 185, 0, 0, 500, 250, 1) + (0, 0., 1860., 'square', 12., '', 'e186', 186, 'um', 1., 0., 0., 1., 186, 0, 0, 500, 250, 1) + (0, 32., 1860., 'square', 12., '', 'e187', 187, 'um', 1., 0., 0., 1., 187, 0, 0, 500, 250, 1) + (0, 16., 1880., 'square', 12., '', 'e188', 188, 'um', 1., 0., 0., 1., 188, 0, 0, 500, 250, 1) + (0, 48., 1880., 'square', 12., '', 'e189', 189, 'um', 1., 0., 0., 1., 189, 0, 0, 500, 250, 1) + (0, 0., 1900., 'square', 12., '', 'e190', 190, 'um', 1., 0., 0., 1., 190, 0, 0, 500, 250, 1) + (0, 32., 1900., 'square', 12., '', 'e191', 191, 'um', 1., 0., 0., 1., 191, 0, 0, 500, 250, 1) + (0, 16., 1920., 'square', 12., '', 'e192', 192, 'um', 1., 0., 0., 1., 192, 0, 0, 500, 250, 1) + (0, 48., 1920., 'square', 12., '', 'e193', 193, 'um', 1., 0., 0., 1., 193, 0, 0, 500, 250, 1) + (0, 0., 1940., 'square', 12., '', 'e194', 194, 'um', 1., 0., 0., 1., 194, 0, 0, 500, 250, 1) + (0, 32., 1940., 'square', 12., '', 'e195', 195, 'um', 1., 0., 0., 1., 195, 0, 0, 500, 250, 1) + (0, 16., 1960., 'square', 12., '', 'e196', 196, 'um', 1., 0., 0., 1., 196, 0, 0, 500, 250, 1) + (0, 48., 1960., 'square', 12., '', 'e197', 197, 'um', 1., 0., 0., 1., 197, 0, 0, 500, 250, 1) + (0, 0., 1980., 'square', 12., '', 'e198', 198, 'um', 1., 0., 0., 1., 198, 0, 0, 500, 250, 1) + (0, 32., 1980., 'square', 12., '', 'e199', 199, 'um', 1., 0., 0., 1., 199, 0, 0, 500, 250, 1) + (0, 16., 2000., 'square', 12., '', 'e200', 200, 'um', 1., 0., 0., 1., 200, 0, 0, 500, 250, 1) + (0, 48., 2000., 'square', 12., '', 'e201', 201, 'um', 1., 0., 0., 1., 201, 0, 0, 500, 250, 1) + (0, 0., 2020., 'square', 12., '', 'e202', 202, 'um', 1., 0., 0., 1., 202, 0, 0, 500, 250, 1) + (0, 32., 2020., 'square', 12., '', 'e203', 203, 'um', 1., 0., 0., 1., 203, 0, 0, 500, 250, 1) + (0, 16., 2040., 'square', 12., '', 'e204', 204, 'um', 1., 0., 0., 1., 204, 0, 0, 500, 250, 1) + (0, 48., 2040., 'square', 12., '', 'e205', 205, 'um', 1., 0., 0., 1., 205, 0, 0, 500, 250, 1) + (0, 0., 2060., 'square', 12., '', 'e206', 206, 'um', 1., 0., 0., 1., 206, 0, 0, 500, 250, 1) + (0, 32., 2060., 'square', 12., '', 'e207', 207, 'um', 1., 0., 0., 1., 207, 0, 0, 500, 250, 1) + (0, 16., 2080., 'square', 12., '', 'e208', 208, 'um', 1., 0., 0., 1., 208, 0, 0, 500, 250, 1) + (0, 48., 2080., 'square', 12., '', 'e209', 209, 'um', 1., 0., 0., 1., 209, 0, 0, 500, 250, 1) + (0, 0., 2100., 'square', 12., '', 'e210', 210, 'um', 1., 0., 0., 1., 210, 0, 0, 500, 250, 1) + (0, 32., 2100., 'square', 12., '', 'e211', 211, 'um', 1., 0., 0., 1., 211, 0, 0, 500, 250, 1) + (0, 16., 2120., 'square', 12., '', 'e212', 212, 'um', 1., 0., 0., 1., 212, 0, 0, 500, 250, 1) + (0, 48., 2120., 'square', 12., '', 'e213', 213, 'um', 1., 0., 0., 1., 213, 0, 0, 500, 250, 1) + (0, 0., 2140., 'square', 12., '', 'e214', 214, 'um', 1., 0., 0., 1., 214, 0, 0, 500, 250, 1) + (0, 32., 2140., 'square', 12., '', 'e215', 215, 'um', 1., 0., 0., 1., 215, 0, 0, 500, 250, 1) + (0, 16., 2160., 'square', 12., '', 'e216', 216, 'um', 1., 0., 0., 1., 216, 0, 0, 500, 250, 1) + (0, 48., 2160., 'square', 12., '', 'e217', 217, 'um', 1., 0., 0., 1., 217, 0, 0, 500, 250, 1) + (0, 0., 2180., 'square', 12., '', 'e218', 218, 'um', 1., 0., 0., 1., 218, 0, 0, 500, 250, 1) + (0, 32., 2180., 'square', 12., '', 'e219', 219, 'um', 1., 0., 0., 1., 219, 0, 0, 500, 250, 1) + (0, 16., 2200., 'square', 12., '', 'e220', 220, 'um', 1., 0., 0., 1., 220, 0, 0, 500, 250, 1) + (0, 48., 2200., 'square', 12., '', 'e221', 221, 'um', 1., 0., 0., 1., 221, 0, 0, 500, 250, 1) + (0, 0., 2220., 'square', 12., '', 'e222', 222, 'um', 1., 0., 0., 1., 222, 0, 0, 500, 250, 1) + (0, 32., 2220., 'square', 12., '', 'e223', 223, 'um', 1., 0., 0., 1., 223, 0, 0, 500, 250, 1) + (0, 16., 2240., 'square', 12., '', 'e224', 224, 'um', 1., 0., 0., 1., 224, 0, 0, 500, 250, 1) + (0, 48., 2240., 'square', 12., '', 'e225', 225, 'um', 1., 0., 0., 1., 225, 0, 0, 500, 250, 1) + (0, 0., 2260., 'square', 12., '', 'e226', 226, 'um', 1., 0., 0., 1., 226, 0, 0, 500, 250, 1) + (0, 32., 2260., 'square', 12., '', 'e227', 227, 'um', 1., 0., 0., 1., 227, 0, 0, 500, 250, 1) + (0, 16., 2280., 'square', 12., '', 'e228', 228, 'um', 1., 0., 0., 1., 228, 0, 0, 500, 250, 1) + (0, 48., 2280., 'square', 12., '', 'e229', 229, 'um', 1., 0., 0., 1., 229, 0, 0, 500, 250, 1) + (0, 0., 2300., 'square', 12., '', 'e230', 230, 'um', 1., 0., 0., 1., 230, 0, 0, 500, 250, 1) + (0, 32., 2300., 'square', 12., '', 'e231', 231, 'um', 1., 0., 0., 1., 231, 0, 0, 500, 250, 1) + (0, 16., 2320., 'square', 12., '', 'e232', 232, 'um', 1., 0., 0., 1., 232, 0, 0, 500, 250, 1) + (0, 48., 2320., 'square', 12., '', 'e233', 233, 'um', 1., 0., 0., 1., 233, 0, 0, 500, 250, 1) + (0, 0., 2340., 'square', 12., '', 'e234', 234, 'um', 1., 0., 0., 1., 234, 0, 0, 500, 250, 1) + (0, 32., 2340., 'square', 12., '', 'e235', 235, 'um', 1., 0., 0., 1., 235, 0, 0, 500, 250, 1) + (0, 16., 2360., 'square', 12., '', 'e236', 236, 'um', 1., 0., 0., 1., 236, 0, 0, 500, 250, 1) + (0, 48., 2360., 'square', 12., '', 'e237', 237, 'um', 1., 0., 0., 1., 237, 0, 0, 500, 250, 1) + (0, 0., 2380., 'square', 12., '', 'e238', 238, 'um', 1., 0., 0., 1., 238, 0, 0, 500, 250, 1) + (0, 32., 2380., 'square', 12., '', 'e239', 239, 'um', 1., 0., 0., 1., 239, 0, 0, 500, 250, 1) + (0, 16., 2400., 'square', 12., '', 'e240', 240, 'um', 1., 0., 0., 1., 240, 0, 0, 500, 250, 1) + (0, 48., 2400., 'square', 12., '', 'e241', 241, 'um', 1., 0., 0., 1., 241, 0, 0, 500, 250, 1) + (0, 0., 2420., 'square', 12., '', 'e242', 242, 'um', 1., 0., 0., 1., 242, 0, 0, 500, 250, 1) + (0, 32., 2420., 'square', 12., '', 'e243', 243, 'um', 1., 0., 0., 1., 243, 0, 0, 500, 250, 1) + (0, 16., 2440., 'square', 12., '', 'e244', 244, 'um', 1., 0., 0., 1., 244, 0, 0, 500, 250, 1) + (0, 48., 2440., 'square', 12., '', 'e245', 245, 'um', 1., 0., 0., 1., 245, 0, 0, 500, 250, 1) + (0, 0., 2460., 'square', 12., '', 'e246', 246, 'um', 1., 0., 0., 1., 246, 0, 0, 500, 250, 1) + (0, 32., 2460., 'square', 12., '', 'e247', 247, 'um', 1., 0., 0., 1., 247, 0, 0, 500, 250, 1) + (0, 16., 2480., 'square', 12., '', 'e248', 248, 'um', 1., 0., 0., 1., 248, 0, 0, 500, 250, 1) + (0, 48., 2480., 'square', 12., '', 'e249', 249, 'um', 1., 0., 0., 1., 249, 0, 0, 500, 250, 1) + (0, 0., 2500., 'square', 12., '', 'e250', 250, 'um', 1., 0., 0., 1., 250, 0, 0, 500, 250, 1) + (0, 32., 2500., 'square', 12., '', 'e251', 251, 'um', 1., 0., 0., 1., 251, 0, 0, 500, 250, 1) + (0, 16., 2520., 'square', 12., '', 'e252', 252, 'um', 1., 0., 0., 1., 252, 0, 0, 500, 250, 1) + (0, 48., 2520., 'square', 12., '', 'e253', 253, 'um', 1., 0., 0., 1., 253, 0, 0, 500, 250, 1) + (0, 0., 2540., 'square', 12., '', 'e254', 254, 'um', 1., 0., 0., 1., 254, 0, 0, 500, 250, 1) + (0, 32., 2540., 'square', 12., '', 'e255', 255, 'um', 1., 0., 0., 1., 255, 0, 0, 500, 250, 1) + (0, 16., 2560., 'square', 12., '', 'e256', 256, 'um', 1., 0., 0., 1., 256, 0, 0, 500, 250, 1) + (0, 48., 2560., 'square', 12., '', 'e257', 257, 'um', 1., 0., 0., 1., 257, 0, 0, 500, 250, 1) + (0, 0., 2580., 'square', 12., '', 'e258', 258, 'um', 1., 0., 0., 1., 258, 0, 0, 500, 250, 1) + (0, 32., 2580., 'square', 12., '', 'e259', 259, 'um', 1., 0., 0., 1., 259, 0, 0, 500, 250, 1) + (0, 16., 2600., 'square', 12., '', 'e260', 260, 'um', 1., 0., 0., 1., 260, 0, 0, 500, 250, 1) + (0, 48., 2600., 'square', 12., '', 'e261', 261, 'um', 1., 0., 0., 1., 261, 0, 0, 500, 250, 1) + (0, 0., 2620., 'square', 12., '', 'e262', 262, 'um', 1., 0., 0., 1., 262, 0, 0, 500, 250, 1) + (0, 32., 2620., 'square', 12., '', 'e263', 263, 'um', 1., 0., 0., 1., 263, 0, 0, 500, 250, 1) + (0, 16., 2640., 'square', 12., '', 'e264', 264, 'um', 1., 0., 0., 1., 264, 0, 0, 500, 250, 1) + (0, 48., 2640., 'square', 12., '', 'e265', 265, 'um', 1., 0., 0., 1., 265, 0, 0, 500, 250, 1) + (0, 0., 2660., 'square', 12., '', 'e266', 266, 'um', 1., 0., 0., 1., 266, 0, 0, 500, 250, 1) + (0, 32., 2660., 'square', 12., '', 'e267', 267, 'um', 1., 0., 0., 1., 267, 0, 0, 500, 250, 1) + (0, 16., 2680., 'square', 12., '', 'e268', 268, 'um', 1., 0., 0., 1., 268, 0, 0, 500, 250, 1) + (0, 48., 2680., 'square', 12., '', 'e269', 269, 'um', 1., 0., 0., 1., 269, 0, 0, 500, 250, 1) + (0, 0., 2700., 'square', 12., '', 'e270', 270, 'um', 1., 0., 0., 1., 270, 0, 0, 500, 250, 1) + (0, 32., 2700., 'square', 12., '', 'e271', 271, 'um', 1., 0., 0., 1., 271, 0, 0, 500, 250, 1) + (0, 16., 2720., 'square', 12., '', 'e272', 272, 'um', 1., 0., 0., 1., 272, 0, 0, 500, 250, 1) + (0, 48., 2720., 'square', 12., '', 'e273', 273, 'um', 1., 0., 0., 1., 273, 0, 0, 500, 250, 1) + (0, 0., 2740., 'square', 12., '', 'e274', 274, 'um', 1., 0., 0., 1., 274, 0, 0, 500, 250, 1) + (0, 32., 2740., 'square', 12., '', 'e275', 275, 'um', 1., 0., 0., 1., 275, 0, 0, 500, 250, 1) + (0, 16., 2760., 'square', 12., '', 'e276', 276, 'um', 1., 0., 0., 1., 276, 0, 0, 500, 250, 1) + (0, 48., 2760., 'square', 12., '', 'e277', 277, 'um', 1., 0., 0., 1., 277, 0, 0, 500, 250, 1) + (0, 0., 2780., 'square', 12., '', 'e278', 278, 'um', 1., 0., 0., 1., 278, 0, 0, 500, 250, 1) + (0, 32., 2780., 'square', 12., '', 'e279', 279, 'um', 1., 0., 0., 1., 279, 0, 0, 500, 250, 1) + (0, 16., 2800., 'square', 12., '', 'e280', 280, 'um', 1., 0., 0., 1., 280, 0, 0, 500, 250, 1) + (0, 48., 2800., 'square', 12., '', 'e281', 281, 'um', 1., 0., 0., 1., 281, 0, 0, 500, 250, 1) + (0, 0., 2820., 'square', 12., '', 'e282', 282, 'um', 1., 0., 0., 1., 282, 0, 0, 500, 250, 1) + (0, 32., 2820., 'square', 12., '', 'e283', 283, 'um', 1., 0., 0., 1., 283, 0, 0, 500, 250, 1) + (0, 16., 2840., 'square', 12., '', 'e284', 284, 'um', 1., 0., 0., 1., 284, 0, 0, 500, 250, 1) + (0, 48., 2840., 'square', 12., '', 'e285', 285, 'um', 1., 0., 0., 1., 285, 0, 0, 500, 250, 1) + (0, 0., 2860., 'square', 12., '', 'e286', 286, 'um', 1., 0., 0., 1., 286, 0, 0, 500, 250, 1) + (0, 32., 2860., 'square', 12., '', 'e287', 287, 'um', 1., 0., 0., 1., 287, 0, 0, 500, 250, 1) + (0, 16., 2880., 'square', 12., '', 'e288', 288, 'um', 1., 0., 0., 1., 288, 0, 0, 500, 250, 1) + (0, 48., 2880., 'square', 12., '', 'e289', 289, 'um', 1., 0., 0., 1., 289, 0, 0, 500, 250, 1) + (0, 0., 2900., 'square', 12., '', 'e290', 290, 'um', 1., 0., 0., 1., 290, 0, 0, 500, 250, 1) + (0, 32., 2900., 'square', 12., '', 'e291', 291, 'um', 1., 0., 0., 1., 291, 0, 0, 500, 250, 1) + (0, 16., 2920., 'square', 12., '', 'e292', 292, 'um', 1., 0., 0., 1., 292, 0, 0, 500, 250, 1) + (0, 48., 2920., 'square', 12., '', 'e293', 293, 'um', 1., 0., 0., 1., 293, 0, 0, 500, 250, 1) + (0, 0., 2940., 'square', 12., '', 'e294', 294, 'um', 1., 0., 0., 1., 294, 0, 0, 500, 250, 1) + (0, 32., 2940., 'square', 12., '', 'e295', 295, 'um', 1., 0., 0., 1., 295, 0, 0, 500, 250, 1) + (0, 16., 2960., 'square', 12., '', 'e296', 296, 'um', 1., 0., 0., 1., 296, 0, 0, 500, 250, 1) + (0, 48., 2960., 'square', 12., '', 'e297', 297, 'um', 1., 0., 0., 1., 297, 0, 0, 500, 250, 1) + (0, 0., 2980., 'square', 12., '', 'e298', 298, 'um', 1., 0., 0., 1., 298, 0, 0, 500, 250, 1) + (0, 32., 2980., 'square', 12., '', 'e299', 299, 'um', 1., 0., 0., 1., 299, 0, 0, 500, 250, 1) + (0, 16., 3000., 'square', 12., '', 'e300', 300, 'um', 1., 0., 0., 1., 300, 0, 0, 500, 250, 1) + (0, 48., 3000., 'square', 12., '', 'e301', 301, 'um', 1., 0., 0., 1., 301, 0, 0, 500, 250, 1) + (0, 0., 3020., 'square', 12., '', 'e302', 302, 'um', 1., 0., 0., 1., 302, 0, 0, 500, 250, 1) + (0, 32., 3020., 'square', 12., '', 'e303', 303, 'um', 1., 0., 0., 1., 303, 0, 0, 500, 250, 1) + (0, 16., 3040., 'square', 12., '', 'e304', 304, 'um', 1., 0., 0., 1., 304, 0, 0, 500, 250, 1) + (0, 48., 3040., 'square', 12., '', 'e305', 305, 'um', 1., 0., 0., 1., 305, 0, 0, 500, 250, 1) + (0, 0., 3060., 'square', 12., '', 'e306', 306, 'um', 1., 0., 0., 1., 306, 0, 0, 500, 250, 1) + (0, 32., 3060., 'square', 12., '', 'e307', 307, 'um', 1., 0., 0., 1., 307, 0, 0, 500, 250, 1) + (0, 16., 3080., 'square', 12., '', 'e308', 308, 'um', 1., 0., 0., 1., 308, 0, 0, 500, 250, 1) + (0, 48., 3080., 'square', 12., '', 'e309', 309, 'um', 1., 0., 0., 1., 309, 0, 0, 500, 250, 1) + (0, 0., 3100., 'square', 12., '', 'e310', 310, 'um', 1., 0., 0., 1., 310, 0, 0, 500, 250, 1) + (0, 32., 3100., 'square', 12., '', 'e311', 311, 'um', 1., 0., 0., 1., 311, 0, 0, 500, 250, 1) + (0, 16., 3120., 'square', 12., '', 'e312', 312, 'um', 1., 0., 0., 1., 312, 0, 0, 500, 250, 1) + (0, 48., 3120., 'square', 12., '', 'e313', 313, 'um', 1., 0., 0., 1., 313, 0, 0, 500, 250, 1) + (0, 0., 3140., 'square', 12., '', 'e314', 314, 'um', 1., 0., 0., 1., 314, 0, 0, 500, 250, 1) + (0, 32., 3140., 'square', 12., '', 'e315', 315, 'um', 1., 0., 0., 1., 315, 0, 0, 500, 250, 1) + (0, 16., 3160., 'square', 12., '', 'e316', 316, 'um', 1., 0., 0., 1., 316, 0, 0, 500, 250, 1) + (0, 48., 3160., 'square', 12., '', 'e317', 317, 'um', 1., 0., 0., 1., 317, 0, 0, 500, 250, 1) + (0, 0., 3180., 'square', 12., '', 'e318', 318, 'um', 1., 0., 0., 1., 318, 0, 0, 500, 250, 1) + (0, 32., 3180., 'square', 12., '', 'e319', 319, 'um', 1., 0., 0., 1., 319, 0, 0, 500, 250, 1) + (0, 16., 3200., 'square', 12., '', 'e320', 320, 'um', 1., 0., 0., 1., 320, 0, 0, 500, 250, 1) + (0, 48., 3200., 'square', 12., '', 'e321', 321, 'um', 1., 0., 0., 1., 321, 0, 0, 500, 250, 1) + (0, 0., 3220., 'square', 12., '', 'e322', 322, 'um', 1., 0., 0., 1., 322, 0, 0, 500, 250, 1) + (0, 32., 3220., 'square', 12., '', 'e323', 323, 'um', 1., 0., 0., 1., 323, 0, 0, 500, 250, 1) + (0, 16., 3240., 'square', 12., '', 'e324', 324, 'um', 1., 0., 0., 1., 324, 0, 0, 500, 250, 1) + (0, 48., 3240., 'square', 12., '', 'e325', 325, 'um', 1., 0., 0., 1., 325, 0, 0, 500, 250, 1) + (0, 0., 3260., 'square', 12., '', 'e326', 326, 'um', 1., 0., 0., 1., 326, 0, 0, 500, 250, 1) + (0, 32., 3260., 'square', 12., '', 'e327', 327, 'um', 1., 0., 0., 1., 327, 0, 0, 500, 250, 1) + (0, 16., 3280., 'square', 12., '', 'e328', 328, 'um', 1., 0., 0., 1., 328, 0, 0, 500, 250, 1) + (0, 48., 3280., 'square', 12., '', 'e329', 329, 'um', 1., 0., 0., 1., 329, 0, 0, 500, 250, 1) + (0, 0., 3300., 'square', 12., '', 'e330', 330, 'um', 1., 0., 0., 1., 330, 0, 0, 500, 250, 1) + (0, 32., 3300., 'square', 12., '', 'e331', 331, 'um', 1., 0., 0., 1., 331, 0, 0, 500, 250, 1) + (0, 16., 3320., 'square', 12., '', 'e332', 332, 'um', 1., 0., 0., 1., 332, 0, 0, 500, 250, 1) + (0, 48., 3320., 'square', 12., '', 'e333', 333, 'um', 1., 0., 0., 1., 333, 0, 0, 500, 250, 1) + (0, 0., 3340., 'square', 12., '', 'e334', 334, 'um', 1., 0., 0., 1., 334, 0, 0, 500, 250, 1) + (0, 32., 3340., 'square', 12., '', 'e335', 335, 'um', 1., 0., 0., 1., 335, 0, 0, 500, 250, 1) + (0, 16., 3360., 'square', 12., '', 'e336', 336, 'um', 1., 0., 0., 1., 336, 0, 0, 500, 250, 1) + (0, 48., 3360., 'square', 12., '', 'e337', 337, 'um', 1., 0., 0., 1., 337, 0, 0, 500, 250, 1) + (0, 0., 3380., 'square', 12., '', 'e338', 338, 'um', 1., 0., 0., 1., 338, 0, 0, 500, 250, 1) + (0, 32., 3380., 'square', 12., '', 'e339', 339, 'um', 1., 0., 0., 1., 339, 0, 0, 500, 250, 1) + (0, 16., 3400., 'square', 12., '', 'e340', 340, 'um', 1., 0., 0., 1., 340, 0, 0, 500, 250, 1) + (0, 48., 3400., 'square', 12., '', 'e341', 341, 'um', 1., 0., 0., 1., 341, 0, 0, 500, 250, 1) + (0, 0., 3420., 'square', 12., '', 'e342', 342, 'um', 1., 0., 0., 1., 342, 0, 0, 500, 250, 1) + (0, 32., 3420., 'square', 12., '', 'e343', 343, 'um', 1., 0., 0., 1., 343, 0, 0, 500, 250, 1) + (0, 16., 3440., 'square', 12., '', 'e344', 344, 'um', 1., 0., 0., 1., 344, 0, 0, 500, 250, 1) + (0, 48., 3440., 'square', 12., '', 'e345', 345, 'um', 1., 0., 0., 1., 345, 0, 0, 500, 250, 1) + (0, 0., 3460., 'square', 12., '', 'e346', 346, 'um', 1., 0., 0., 1., 346, 0, 0, 500, 250, 1) + (0, 32., 3460., 'square', 12., '', 'e347', 347, 'um', 1., 0., 0., 1., 347, 0, 0, 500, 250, 1) + (0, 16., 3480., 'square', 12., '', 'e348', 348, 'um', 1., 0., 0., 1., 348, 0, 0, 500, 250, 1) + (0, 48., 3480., 'square', 12., '', 'e349', 349, 'um', 1., 0., 0., 1., 349, 0, 0, 500, 250, 1) + (0, 0., 3500., 'square', 12., '', 'e350', 350, 'um', 1., 0., 0., 1., 350, 0, 0, 500, 250, 1) + (0, 32., 3500., 'square', 12., '', 'e351', 351, 'um', 1., 0., 0., 1., 351, 0, 0, 500, 250, 1) + (0, 16., 3520., 'square', 12., '', 'e352', 352, 'um', 1., 0., 0., 1., 352, 0, 0, 500, 250, 1) + (0, 48., 3520., 'square', 12., '', 'e353', 353, 'um', 1., 0., 0., 1., 353, 0, 0, 500, 250, 1) + (0, 0., 3540., 'square', 12., '', 'e354', 354, 'um', 1., 0., 0., 1., 354, 0, 0, 500, 250, 1) + (0, 32., 3540., 'square', 12., '', 'e355', 355, 'um', 1., 0., 0., 1., 355, 0, 0, 500, 250, 1) + (0, 16., 3560., 'square', 12., '', 'e356', 356, 'um', 1., 0., 0., 1., 356, 0, 0, 500, 250, 1) + (0, 48., 3560., 'square', 12., '', 'e357', 357, 'um', 1., 0., 0., 1., 357, 0, 0, 500, 250, 1) + (0, 0., 3580., 'square', 12., '', 'e358', 358, 'um', 1., 0., 0., 1., 358, 0, 0, 500, 250, 1) + (0, 32., 3580., 'square', 12., '', 'e359', 359, 'um', 1., 0., 0., 1., 359, 0, 0, 500, 250, 1) + (0, 16., 3600., 'square', 12., '', 'e360', 360, 'um', 1., 0., 0., 1., 360, 0, 0, 500, 250, 1) + (0, 48., 3600., 'square', 12., '', 'e361', 361, 'um', 1., 0., 0., 1., 361, 0, 0, 500, 250, 1) + (0, 0., 3620., 'square', 12., '', 'e362', 362, 'um', 1., 0., 0., 1., 362, 0, 0, 500, 250, 1) + (0, 32., 3620., 'square', 12., '', 'e363', 363, 'um', 1., 0., 0., 1., 363, 0, 0, 500, 250, 1) + (0, 16., 3640., 'square', 12., '', 'e364', 364, 'um', 1., 0., 0., 1., 364, 0, 0, 500, 250, 1) + (0, 48., 3640., 'square', 12., '', 'e365', 365, 'um', 1., 0., 0., 1., 365, 0, 0, 500, 250, 1) + (0, 0., 3660., 'square', 12., '', 'e366', 366, 'um', 1., 0., 0., 1., 366, 0, 0, 500, 250, 1) + (0, 32., 3660., 'square', 12., '', 'e367', 367, 'um', 1., 0., 0., 1., 367, 0, 0, 500, 250, 1) + (0, 16., 3680., 'square', 12., '', 'e368', 368, 'um', 1., 0., 0., 1., 368, 0, 0, 500, 250, 1) + (0, 48., 3680., 'square', 12., '', 'e369', 369, 'um', 1., 0., 0., 1., 369, 0, 0, 500, 250, 1) + (0, 0., 3700., 'square', 12., '', 'e370', 370, 'um', 1., 0., 0., 1., 370, 0, 0, 500, 250, 1) + (0, 32., 3700., 'square', 12., '', 'e371', 371, 'um', 1., 0., 0., 1., 371, 0, 0, 500, 250, 1) + (0, 16., 3720., 'square', 12., '', 'e372', 372, 'um', 1., 0., 0., 1., 372, 0, 0, 500, 250, 1) + (0, 48., 3720., 'square', 12., '', 'e373', 373, 'um', 1., 0., 0., 1., 373, 0, 0, 500, 250, 1) + (0, 0., 3740., 'square', 12., '', 'e374', 374, 'um', 1., 0., 0., 1., 374, 0, 0, 500, 250, 1) + (0, 32., 3740., 'square', 12., '', 'e375', 375, 'um', 1., 0., 0., 1., 375, 0, 0, 500, 250, 1) + (0, 16., 3760., 'square', 12., '', 'e376', 376, 'um', 1., 0., 0., 1., 376, 0, 0, 500, 250, 1) + (0, 48., 3760., 'square', 12., '', 'e377', 377, 'um', 1., 0., 0., 1., 377, 0, 0, 500, 250, 1) + (0, 0., 3780., 'square', 12., '', 'e378', 378, 'um', 1., 0., 0., 1., 378, 0, 0, 500, 250, 1) + (0, 32., 3780., 'square', 12., '', 'e379', 379, 'um', 1., 0., 0., 1., 379, 0, 0, 500, 250, 1) + (0, 16., 3800., 'square', 12., '', 'e380', 380, 'um', 1., 0., 0., 1., 380, 0, 0, 500, 250, 1) + (0, 48., 3800., 'square', 12., '', 'e381', 381, 'um', 1., 0., 0., 1., 381, 0, 0, 500, 250, 1) + (0, 0., 3820., 'square', 12., '', 'e382', 382, 'um', 1., 0., 0., 1., 382, 0, 0, 500, 250, 1) + (0, 32., 3820., 'square', 12., '', 'e383', 383, 'um', 1., 0., 0., 1., 383, 0, 0, 500, 250, 1)]
    location [[ 16. 0.] + [ 48. 0.] + [ 0. 20.] + [ 32. 20.] + [ 16. 40.] + [ 48. 40.] + [ 0. 60.] + [ 32. 60.] + [ 16. 80.] + [ 48. 80.] + [ 0. 100.] + [ 32. 100.] + [ 16. 120.] + [ 48. 120.] + [ 0. 140.] + [ 32. 140.] + [ 16. 160.] + [ 48. 160.] + [ 0. 180.] + [ 32. 180.] + [ 16. 200.] + [ 48. 200.] + [ 0. 220.] + [ 32. 220.] + [ 16. 240.] + [ 48. 240.] + [ 0. 260.] + [ 32. 260.] + [ 16. 280.] + [ 48. 280.] + [ 0. 300.] + [ 32. 300.] + [ 16. 320.] + [ 48. 320.] + [ 0. 340.] + [ 32. 340.] + [ 16. 360.] + [ 48. 360.] + [ 0. 380.] + [ 32. 380.] + [ 16. 400.] + [ 48. 400.] + [ 0. 420.] + [ 32. 420.] + [ 16. 440.] + [ 48. 440.] + [ 0. 460.] + [ 32. 460.] + [ 16. 480.] + [ 48. 480.] + [ 0. 500.] + [ 32. 500.] + [ 16. 520.] + [ 48. 520.] + [ 0. 540.] + [ 32. 540.] + [ 16. 560.] + [ 48. 560.] + [ 0. 580.] + [ 32. 580.] + [ 16. 600.] + [ 48. 600.] + [ 0. 620.] + [ 32. 620.] + [ 16. 640.] + [ 48. 640.] + [ 0. 660.] + [ 32. 660.] + [ 16. 680.] + [ 48. 680.] + [ 0. 700.] + [ 32. 700.] + [ 16. 720.] + [ 48. 720.] + [ 0. 740.] + [ 32. 740.] + [ 16. 760.] + [ 48. 760.] + [ 0. 780.] + [ 32. 780.] + [ 16. 800.] + [ 48. 800.] + [ 0. 820.] + [ 32. 820.] + [ 16. 840.] + [ 48. 840.] + [ 0. 860.] + [ 32. 860.] + [ 16. 880.] + [ 48. 880.] + [ 0. 900.] + [ 32. 900.] + [ 16. 920.] + [ 48. 920.] + [ 0. 940.] + [ 32. 940.] + [ 16. 960.] + [ 48. 960.] + [ 0. 980.] + [ 32. 980.] + [ 16. 1000.] + [ 48. 1000.] + [ 0. 1020.] + [ 32. 1020.] + [ 16. 1040.] + [ 48. 1040.] + [ 0. 1060.] + [ 32. 1060.] + [ 16. 1080.] + [ 48. 1080.] + [ 0. 1100.] + [ 32. 1100.] + [ 16. 1120.] + [ 48. 1120.] + [ 0. 1140.] + [ 32. 1140.] + [ 16. 1160.] + [ 48. 1160.] + [ 0. 1180.] + [ 32. 1180.] + [ 16. 1200.] + [ 48. 1200.] + [ 0. 1220.] + [ 32. 1220.] + [ 16. 1240.] + [ 48. 1240.] + [ 0. 1260.] + [ 32. 1260.] + [ 16. 1280.] + [ 48. 1280.] + [ 0. 1300.] + [ 32. 1300.] + [ 16. 1320.] + [ 48. 1320.] + [ 0. 1340.] + [ 32. 1340.] + [ 16. 1360.] + [ 48. 1360.] + [ 0. 1380.] + [ 32. 1380.] + [ 16. 1400.] + [ 48. 1400.] + [ 0. 1420.] + [ 32. 1420.] + [ 16. 1440.] + [ 48. 1440.] + [ 0. 1460.] + [ 32. 1460.] + [ 16. 1480.] + [ 48. 1480.] + [ 0. 1500.] + [ 32. 1500.] + [ 16. 1520.] + [ 48. 1520.] + [ 0. 1540.] + [ 32. 1540.] + [ 16. 1560.] + [ 48. 1560.] + [ 0. 1580.] + [ 32. 1580.] + [ 16. 1600.] + [ 48. 1600.] + [ 0. 1620.] + [ 32. 1620.] + [ 16. 1640.] + [ 48. 1640.] + [ 0. 1660.] + [ 32. 1660.] + [ 16. 1680.] + [ 48. 1680.] + [ 0. 1700.] + [ 32. 1700.] + [ 16. 1720.] + [ 48. 1720.] + [ 0. 1740.] + [ 32. 1740.] + [ 16. 1760.] + [ 48. 1760.] + [ 0. 1780.] + [ 32. 1780.] + [ 16. 1800.] + [ 48. 1800.] + [ 0. 1820.] + [ 32. 1820.] + [ 16. 1840.] + [ 48. 1840.] + [ 0. 1860.] + [ 32. 1860.] + [ 16. 1880.] + [ 48. 1880.] + [ 0. 1900.] + [ 32. 1900.] + [ 16. 1920.] + [ 48. 1920.] + [ 0. 1940.] + [ 32. 1940.] + [ 16. 1960.] + [ 48. 1960.] + [ 0. 1980.] + [ 32. 1980.] + [ 16. 2000.] + [ 48. 2000.] + [ 0. 2020.] + [ 32. 2020.] + [ 16. 2040.] + [ 48. 2040.] + [ 0. 2060.] + [ 32. 2060.] + [ 16. 2080.] + [ 48. 2080.] + [ 0. 2100.] + [ 32. 2100.] + [ 16. 2120.] + [ 48. 2120.] + [ 0. 2140.] + [ 32. 2140.] + [ 16. 2160.] + [ 48. 2160.] + [ 0. 2180.] + [ 32. 2180.] + [ 16. 2200.] + [ 48. 2200.] + [ 0. 2220.] + [ 32. 2220.] + [ 16. 2240.] + [ 48. 2240.] + [ 0. 2260.] + [ 32. 2260.] + [ 16. 2280.] + [ 48. 2280.] + [ 0. 2300.] + [ 32. 2300.] + [ 16. 2320.] + [ 48. 2320.] + [ 0. 2340.] + [ 32. 2340.] + [ 16. 2360.] + [ 48. 2360.] + [ 0. 2380.] + [ 32. 2380.] + [ 16. 2400.] + [ 48. 2400.] + [ 0. 2420.] + [ 32. 2420.] + [ 16. 2440.] + [ 48. 2440.] + [ 0. 2460.] + [ 32. 2460.] + [ 16. 2480.] + [ 48. 2480.] + [ 0. 2500.] + [ 32. 2500.] + [ 16. 2520.] + [ 48. 2520.] + [ 0. 2540.] + [ 32. 2540.] + [ 16. 2560.] + [ 48. 2560.] + [ 0. 2580.] + [ 32. 2580.] + [ 16. 2600.] + [ 48. 2600.] + [ 0. 2620.] + [ 32. 2620.] + [ 16. 2640.] + [ 48. 2640.] + [ 0. 2660.] + [ 32. 2660.] + [ 16. 2680.] + [ 48. 2680.] + [ 0. 2700.] + [ 32. 2700.] + [ 16. 2720.] + [ 48. 2720.] + [ 0. 2740.] + [ 32. 2740.] + [ 16. 2760.] + [ 48. 2760.] + [ 0. 2780.] + [ 32. 2780.] + [ 16. 2800.] + [ 48. 2800.] + [ 0. 2820.] + [ 32. 2820.] + [ 16. 2840.] + [ 48. 2840.] + [ 0. 2860.] + [ 32. 2860.] + [ 16. 2880.] + [ 48. 2880.] + [ 0. 2900.] + [ 32. 2900.] + [ 16. 2920.] + [ 48. 2920.] + [ 0. 2940.] + [ 32. 2940.] + [ 16. 2960.] + [ 48. 2960.] + [ 0. 2980.] + [ 32. 2980.] + [ 16. 3000.] + [ 48. 3000.] + [ 0. 3020.] + [ 32. 3020.] + [ 16. 3040.] + [ 48. 3040.] + [ 0. 3060.] + [ 32. 3060.] + [ 16. 3080.] + [ 48. 3080.] + [ 0. 3100.] + [ 32. 3100.] + [ 16. 3120.] + [ 48. 3120.] + [ 0. 3140.] + [ 32. 3140.] + [ 16. 3160.] + [ 48. 3160.] + [ 0. 3180.] + [ 32. 3180.] + [ 16. 3200.] + [ 48. 3200.] + [ 0. 3220.] + [ 32. 3220.] + [ 16. 3240.] + [ 48. 3240.] + [ 0. 3260.] + [ 32. 3260.] + [ 16. 3280.] + [ 48. 3280.] + [ 0. 3300.] + [ 32. 3300.] + [ 16. 3320.] + [ 48. 3320.] + [ 0. 3340.] + [ 32. 3340.] + [ 16. 3360.] + [ 48. 3360.] + [ 0. 3380.] + [ 32. 3380.] + [ 16. 3400.] + [ 48. 3400.] + [ 0. 3420.] + [ 32. 3420.] + [ 16. 3440.] + [ 48. 3440.] + [ 0. 3460.] + [ 32. 3460.] + [ 16. 3480.] + [ 48. 3480.] + [ 0. 3500.] + [ 32. 3500.] + [ 16. 3520.] + [ 48. 3520.] + [ 0. 3540.] + [ 32. 3540.] + [ 16. 3560.] + [ 48. 3560.] + [ 0. 3580.] + [ 32. 3580.] + [ 16. 3600.] + [ 48. 3600.] + [ 0. 3620.] + [ 32. 3620.] + [ 16. 3640.] + [ 48. 3640.] + [ 0. 3660.] + [ 32. 3660.] + [ 16. 3680.] + [ 48. 3680.] + [ 0. 3700.] + [ 32. 3700.] + [ 16. 3720.] + [ 48. 3720.] + [ 0. 3740.] + [ 32. 3740.] + [ 16. 3760.] + [ 48. 3760.] + [ 0. 3780.] + [ 32. 3780.] + [ 16. 3800.] + [ 48. 3800.] + [ 0. 3820.] + [ 32. 3820.]]
    group [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
    inter_sample_shift [0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385]
+ + + +Note that the ``generate_hybrid_recording`` is warning us that we might +want to account for drift! + +.. code:: ipython3 + + # by passing the `sorting_hybrid` object, we make sure that injected spikes are the same + # this will take a bit more time because it's interpolating the templates to account for drifts + recording_hybrid_with_drift, sorting_hybrid = sgen.generate_hybrid_recording( + recording=recording_preproc, + templates=templates_relocated, + motion=motion_info["motion"], + sorting=sorting_hybrid, + seed=2308, + ) + recording_hybrid_with_drift + + + + +.. raw:: html + +
InjectDriftingTemplatesRecording: 384 channels - 30.0kHz - 1 segments - 58,715,724 samples - 1,957.19s (32.62 minutes) - float64 dtype - 167.99 GiB
Channel IDs
    ['imec0.ap#AP0' 'imec0.ap#AP1' 'imec0.ap#AP2' 'imec0.ap#AP3' + 'imec0.ap#AP4' 'imec0.ap#AP5' 'imec0.ap#AP6' 'imec0.ap#AP7' + 'imec0.ap#AP8' 'imec0.ap#AP9' 'imec0.ap#AP10' 'imec0.ap#AP11' + 'imec0.ap#AP12' 'imec0.ap#AP13' 'imec0.ap#AP14' 'imec0.ap#AP15' + 'imec0.ap#AP16' 'imec0.ap#AP17' 'imec0.ap#AP18' 'imec0.ap#AP19' + 'imec0.ap#AP20' 'imec0.ap#AP21' 'imec0.ap#AP22' 'imec0.ap#AP23' + 'imec0.ap#AP24' 'imec0.ap#AP25' 'imec0.ap#AP26' 'imec0.ap#AP27' + 'imec0.ap#AP28' 'imec0.ap#AP29' 'imec0.ap#AP30' 'imec0.ap#AP31' + 'imec0.ap#AP32' 'imec0.ap#AP33' 'imec0.ap#AP34' 'imec0.ap#AP35' + 'imec0.ap#AP36' 'imec0.ap#AP37' 'imec0.ap#AP38' 'imec0.ap#AP39' + 'imec0.ap#AP40' 'imec0.ap#AP41' 'imec0.ap#AP42' 'imec0.ap#AP43' + 'imec0.ap#AP44' 'imec0.ap#AP45' 'imec0.ap#AP46' 'imec0.ap#AP47' + 'imec0.ap#AP48' 'imec0.ap#AP49' 'imec0.ap#AP50' 'imec0.ap#AP51' + 'imec0.ap#AP52' 'imec0.ap#AP53' 'imec0.ap#AP54' 'imec0.ap#AP55' + 'imec0.ap#AP56' 'imec0.ap#AP57' 'imec0.ap#AP58' 'imec0.ap#AP59' + 'imec0.ap#AP60' 'imec0.ap#AP61' 'imec0.ap#AP62' 'imec0.ap#AP63' + 'imec0.ap#AP64' 'imec0.ap#AP65' 'imec0.ap#AP66' 'imec0.ap#AP67' + 'imec0.ap#AP68' 'imec0.ap#AP69' 'imec0.ap#AP70' 'imec0.ap#AP71' + 'imec0.ap#AP72' 'imec0.ap#AP73' 'imec0.ap#AP74' 'imec0.ap#AP75' + 'imec0.ap#AP76' 'imec0.ap#AP77' 'imec0.ap#AP78' 'imec0.ap#AP79' + 'imec0.ap#AP80' 'imec0.ap#AP81' 'imec0.ap#AP82' 'imec0.ap#AP83' + 'imec0.ap#AP84' 'imec0.ap#AP85' 'imec0.ap#AP86' 'imec0.ap#AP87' + 'imec0.ap#AP88' 'imec0.ap#AP89' 'imec0.ap#AP90' 'imec0.ap#AP91' + 'imec0.ap#AP92' 'imec0.ap#AP93' 'imec0.ap#AP94' 'imec0.ap#AP95' + 'imec0.ap#AP96' 'imec0.ap#AP97' 'imec0.ap#AP98' 'imec0.ap#AP99' + 'imec0.ap#AP100' 'imec0.ap#AP101' 'imec0.ap#AP102' 'imec0.ap#AP103' + 'imec0.ap#AP104' 'imec0.ap#AP105' 'imec0.ap#AP106' 'imec0.ap#AP107' + 'imec0.ap#AP108' 'imec0.ap#AP109' 'imec0.ap#AP110' 'imec0.ap#AP111' + 'imec0.ap#AP112' 'imec0.ap#AP113' 'imec0.ap#AP114' 'imec0.ap#AP115' + 'imec0.ap#AP116' 'imec0.ap#AP117' 'imec0.ap#AP118' 'imec0.ap#AP119' + 'imec0.ap#AP120' 'imec0.ap#AP121' 'imec0.ap#AP122' 'imec0.ap#AP123' + 'imec0.ap#AP124' 'imec0.ap#AP125' 'imec0.ap#AP126' 'imec0.ap#AP127' + 'imec0.ap#AP128' 'imec0.ap#AP129' 'imec0.ap#AP130' 'imec0.ap#AP131' + 'imec0.ap#AP132' 'imec0.ap#AP133' 'imec0.ap#AP134' 'imec0.ap#AP135' + 'imec0.ap#AP136' 'imec0.ap#AP137' 'imec0.ap#AP138' 'imec0.ap#AP139' + 'imec0.ap#AP140' 'imec0.ap#AP141' 'imec0.ap#AP142' 'imec0.ap#AP143' + 'imec0.ap#AP144' 'imec0.ap#AP145' 'imec0.ap#AP146' 'imec0.ap#AP147' + 'imec0.ap#AP148' 'imec0.ap#AP149' 'imec0.ap#AP150' 'imec0.ap#AP151' + 'imec0.ap#AP152' 'imec0.ap#AP153' 'imec0.ap#AP154' 'imec0.ap#AP155' + 'imec0.ap#AP156' 'imec0.ap#AP157' 'imec0.ap#AP158' 'imec0.ap#AP159' + 'imec0.ap#AP160' 'imec0.ap#AP161' 'imec0.ap#AP162' 'imec0.ap#AP163' + 'imec0.ap#AP164' 'imec0.ap#AP165' 'imec0.ap#AP166' 'imec0.ap#AP167' + 'imec0.ap#AP168' 'imec0.ap#AP169' 'imec0.ap#AP170' 'imec0.ap#AP171' + 'imec0.ap#AP172' 'imec0.ap#AP173' 'imec0.ap#AP174' 'imec0.ap#AP175' + 'imec0.ap#AP176' 'imec0.ap#AP177' 'imec0.ap#AP178' 'imec0.ap#AP179' + 'imec0.ap#AP180' 'imec0.ap#AP181' 'imec0.ap#AP182' 'imec0.ap#AP183' + 'imec0.ap#AP184' 'imec0.ap#AP185' 'imec0.ap#AP186' 'imec0.ap#AP187' + 'imec0.ap#AP188' 'imec0.ap#AP189' 'imec0.ap#AP190' 'imec0.ap#AP191' + 'imec0.ap#AP192' 'imec0.ap#AP193' 'imec0.ap#AP194' 'imec0.ap#AP195' + 'imec0.ap#AP196' 'imec0.ap#AP197' 'imec0.ap#AP198' 'imec0.ap#AP199' + 'imec0.ap#AP200' 'imec0.ap#AP201' 'imec0.ap#AP202' 'imec0.ap#AP203' + 'imec0.ap#AP204' 'imec0.ap#AP205' 'imec0.ap#AP206' 'imec0.ap#AP207' + 'imec0.ap#AP208' 'imec0.ap#AP209' 'imec0.ap#AP210' 'imec0.ap#AP211' + 'imec0.ap#AP212' 'imec0.ap#AP213' 'imec0.ap#AP214' 'imec0.ap#AP215' + 'imec0.ap#AP216' 'imec0.ap#AP217' 'imec0.ap#AP218' 'imec0.ap#AP219' + 'imec0.ap#AP220' 'imec0.ap#AP221' 'imec0.ap#AP222' 'imec0.ap#AP223' + 'imec0.ap#AP224' 'imec0.ap#AP225' 'imec0.ap#AP226' 'imec0.ap#AP227' + 'imec0.ap#AP228' 'imec0.ap#AP229' 'imec0.ap#AP230' 'imec0.ap#AP231' + 'imec0.ap#AP232' 'imec0.ap#AP233' 'imec0.ap#AP234' 'imec0.ap#AP235' + 'imec0.ap#AP236' 'imec0.ap#AP237' 'imec0.ap#AP238' 'imec0.ap#AP239' + 'imec0.ap#AP240' 'imec0.ap#AP241' 'imec0.ap#AP242' 'imec0.ap#AP243' + 'imec0.ap#AP244' 'imec0.ap#AP245' 'imec0.ap#AP246' 'imec0.ap#AP247' + 'imec0.ap#AP248' 'imec0.ap#AP249' 'imec0.ap#AP250' 'imec0.ap#AP251' + 'imec0.ap#AP252' 'imec0.ap#AP253' 'imec0.ap#AP254' 'imec0.ap#AP255' + 'imec0.ap#AP256' 'imec0.ap#AP257' 'imec0.ap#AP258' 'imec0.ap#AP259' + 'imec0.ap#AP260' 'imec0.ap#AP261' 'imec0.ap#AP262' 'imec0.ap#AP263' + 'imec0.ap#AP264' 'imec0.ap#AP265' 'imec0.ap#AP266' 'imec0.ap#AP267' + 'imec0.ap#AP268' 'imec0.ap#AP269' 'imec0.ap#AP270' 'imec0.ap#AP271' + 'imec0.ap#AP272' 'imec0.ap#AP273' 'imec0.ap#AP274' 'imec0.ap#AP275' + 'imec0.ap#AP276' 'imec0.ap#AP277' 'imec0.ap#AP278' 'imec0.ap#AP279' + 'imec0.ap#AP280' 'imec0.ap#AP281' 'imec0.ap#AP282' 'imec0.ap#AP283' + 'imec0.ap#AP284' 'imec0.ap#AP285' 'imec0.ap#AP286' 'imec0.ap#AP287' + 'imec0.ap#AP288' 'imec0.ap#AP289' 'imec0.ap#AP290' 'imec0.ap#AP291' + 'imec0.ap#AP292' 'imec0.ap#AP293' 'imec0.ap#AP294' 'imec0.ap#AP295' + 'imec0.ap#AP296' 'imec0.ap#AP297' 'imec0.ap#AP298' 'imec0.ap#AP299' + 'imec0.ap#AP300' 'imec0.ap#AP301' 'imec0.ap#AP302' 'imec0.ap#AP303' + 'imec0.ap#AP304' 'imec0.ap#AP305' 'imec0.ap#AP306' 'imec0.ap#AP307' + 'imec0.ap#AP308' 'imec0.ap#AP309' 'imec0.ap#AP310' 'imec0.ap#AP311' + 'imec0.ap#AP312' 'imec0.ap#AP313' 'imec0.ap#AP314' 'imec0.ap#AP315' + 'imec0.ap#AP316' 'imec0.ap#AP317' 'imec0.ap#AP318' 'imec0.ap#AP319' + 'imec0.ap#AP320' 'imec0.ap#AP321' 'imec0.ap#AP322' 'imec0.ap#AP323' + 'imec0.ap#AP324' 'imec0.ap#AP325' 'imec0.ap#AP326' 'imec0.ap#AP327' + 'imec0.ap#AP328' 'imec0.ap#AP329' 'imec0.ap#AP330' 'imec0.ap#AP331' + 'imec0.ap#AP332' 'imec0.ap#AP333' 'imec0.ap#AP334' 'imec0.ap#AP335' + 'imec0.ap#AP336' 'imec0.ap#AP337' 'imec0.ap#AP338' 'imec0.ap#AP339' + 'imec0.ap#AP340' 'imec0.ap#AP341' 'imec0.ap#AP342' 'imec0.ap#AP343' + 'imec0.ap#AP344' 'imec0.ap#AP345' 'imec0.ap#AP346' 'imec0.ap#AP347' + 'imec0.ap#AP348' 'imec0.ap#AP349' 'imec0.ap#AP350' 'imec0.ap#AP351' + 'imec0.ap#AP352' 'imec0.ap#AP353' 'imec0.ap#AP354' 'imec0.ap#AP355' + 'imec0.ap#AP356' 'imec0.ap#AP357' 'imec0.ap#AP358' 'imec0.ap#AP359' + 'imec0.ap#AP360' 'imec0.ap#AP361' 'imec0.ap#AP362' 'imec0.ap#AP363' + 'imec0.ap#AP364' 'imec0.ap#AP365' 'imec0.ap#AP366' 'imec0.ap#AP367' + 'imec0.ap#AP368' 'imec0.ap#AP369' 'imec0.ap#AP370' 'imec0.ap#AP371' + 'imec0.ap#AP372' 'imec0.ap#AP373' 'imec0.ap#AP374' 'imec0.ap#AP375' + 'imec0.ap#AP376' 'imec0.ap#AP377' 'imec0.ap#AP378' 'imec0.ap#AP379' + 'imec0.ap#AP380' 'imec0.ap#AP381' 'imec0.ap#AP382' 'imec0.ap#AP383']
Annotations
  • is_filtered : True
  • probe_0_planar_contour : [[ -11 9989] + [ -11 -11] + [ 24 -186] + [ 59 -11] + [ 59 9989]]
  • probes_info : [{'manufacturer': 'IMEC', 'model_name': 'Neuropixels 1.0', 'serial_number': '18194814141'}]
Channel Properties
    gain_to_uV [2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375 + 2.34375 2.34375 2.34375 2.34375 2.34375 2.34375]
    offset_to_uV [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
    channel_names ['AP0' 'AP1' 'AP2' 'AP3' 'AP4' 'AP5' 'AP6' 'AP7' 'AP8' 'AP9' 'AP10' 'AP11' + 'AP12' 'AP13' 'AP14' 'AP15' 'AP16' 'AP17' 'AP18' 'AP19' 'AP20' 'AP21' + 'AP22' 'AP23' 'AP24' 'AP25' 'AP26' 'AP27' 'AP28' 'AP29' 'AP30' 'AP31' + 'AP32' 'AP33' 'AP34' 'AP35' 'AP36' 'AP37' 'AP38' 'AP39' 'AP40' 'AP41' + 'AP42' 'AP43' 'AP44' 'AP45' 'AP46' 'AP47' 'AP48' 'AP49' 'AP50' 'AP51' + 'AP52' 'AP53' 'AP54' 'AP55' 'AP56' 'AP57' 'AP58' 'AP59' 'AP60' 'AP61' + 'AP62' 'AP63' 'AP64' 'AP65' 'AP66' 'AP67' 'AP68' 'AP69' 'AP70' 'AP71' + 'AP72' 'AP73' 'AP74' 'AP75' 'AP76' 'AP77' 'AP78' 'AP79' 'AP80' 'AP81' + 'AP82' 'AP83' 'AP84' 'AP85' 'AP86' 'AP87' 'AP88' 'AP89' 'AP90' 'AP91' + 'AP92' 'AP93' 'AP94' 'AP95' 'AP96' 'AP97' 'AP98' 'AP99' 'AP100' 'AP101' + 'AP102' 'AP103' 'AP104' 'AP105' 'AP106' 'AP107' 'AP108' 'AP109' 'AP110' + 'AP111' 'AP112' 'AP113' 'AP114' 'AP115' 'AP116' 'AP117' 'AP118' 'AP119' + 'AP120' 'AP121' 'AP122' 'AP123' 'AP124' 'AP125' 'AP126' 'AP127' 'AP128' + 'AP129' 'AP130' 'AP131' 'AP132' 'AP133' 'AP134' 'AP135' 'AP136' 'AP137' + 'AP138' 'AP139' 'AP140' 'AP141' 'AP142' 'AP143' 'AP144' 'AP145' 'AP146' + 'AP147' 'AP148' 'AP149' 'AP150' 'AP151' 'AP152' 'AP153' 'AP154' 'AP155' + 'AP156' 'AP157' 'AP158' 'AP159' 'AP160' 'AP161' 'AP162' 'AP163' 'AP164' + 'AP165' 'AP166' 'AP167' 'AP168' 'AP169' 'AP170' 'AP171' 'AP172' 'AP173' + 'AP174' 'AP175' 'AP176' 'AP177' 'AP178' 'AP179' 'AP180' 'AP181' 'AP182' + 'AP183' 'AP184' 'AP185' 'AP186' 'AP187' 'AP188' 'AP189' 'AP190' 'AP191' + 'AP192' 'AP193' 'AP194' 'AP195' 'AP196' 'AP197' 'AP198' 'AP199' 'AP200' + 'AP201' 'AP202' 'AP203' 'AP204' 'AP205' 'AP206' 'AP207' 'AP208' 'AP209' + 'AP210' 'AP211' 'AP212' 'AP213' 'AP214' 'AP215' 'AP216' 'AP217' 'AP218' + 'AP219' 'AP220' 'AP221' 'AP222' 'AP223' 'AP224' 'AP225' 'AP226' 'AP227' + 'AP228' 'AP229' 'AP230' 'AP231' 'AP232' 'AP233' 'AP234' 'AP235' 'AP236' + 'AP237' 'AP238' 'AP239' 'AP240' 'AP241' 'AP242' 'AP243' 'AP244' 'AP245' + 'AP246' 'AP247' 'AP248' 'AP249' 'AP250' 'AP251' 'AP252' 'AP253' 'AP254' + 'AP255' 'AP256' 'AP257' 'AP258' 'AP259' 'AP260' 'AP261' 'AP262' 'AP263' + 'AP264' 'AP265' 'AP266' 'AP267' 'AP268' 'AP269' 'AP270' 'AP271' 'AP272' + 'AP273' 'AP274' 'AP275' 'AP276' 'AP277' 'AP278' 'AP279' 'AP280' 'AP281' + 'AP282' 'AP283' 'AP284' 'AP285' 'AP286' 'AP287' 'AP288' 'AP289' 'AP290' + 'AP291' 'AP292' 'AP293' 'AP294' 'AP295' 'AP296' 'AP297' 'AP298' 'AP299' + 'AP300' 'AP301' 'AP302' 'AP303' 'AP304' 'AP305' 'AP306' 'AP307' 'AP308' + 'AP309' 'AP310' 'AP311' 'AP312' 'AP313' 'AP314' 'AP315' 'AP316' 'AP317' + 'AP318' 'AP319' 'AP320' 'AP321' 'AP322' 'AP323' 'AP324' 'AP325' 'AP326' + 'AP327' 'AP328' 'AP329' 'AP330' 'AP331' 'AP332' 'AP333' 'AP334' 'AP335' + 'AP336' 'AP337' 'AP338' 'AP339' 'AP340' 'AP341' 'AP342' 'AP343' 'AP344' + 'AP345' 'AP346' 'AP347' 'AP348' 'AP349' 'AP350' 'AP351' 'AP352' 'AP353' + 'AP354' 'AP355' 'AP356' 'AP357' 'AP358' 'AP359' 'AP360' 'AP361' 'AP362' + 'AP363' 'AP364' 'AP365' 'AP366' 'AP367' 'AP368' 'AP369' 'AP370' 'AP371' + 'AP372' 'AP373' 'AP374' 'AP375' 'AP376' 'AP377' 'AP378' 'AP379' 'AP380' + 'AP381' 'AP382' 'AP383']
    contact_vector [(0, 16., 0., 'circle', 1., '', '', 0, 'um', 1., 0., 0., 1.) + (0, 48., 0., 'circle', 1., '', '', 1, 'um', 1., 0., 0., 1.) + (0, 0., 20., 'circle', 1., '', '', 2, 'um', 1., 0., 0., 1.) + (0, 32., 20., 'circle', 1., '', '', 3, 'um', 1., 0., 0., 1.) + (0, 16., 40., 'circle', 1., '', '', 4, 'um', 1., 0., 0., 1.) + (0, 48., 40., 'circle', 1., '', '', 5, 'um', 1., 0., 0., 1.) + (0, 0., 60., 'circle', 1., '', '', 6, 'um', 1., 0., 0., 1.) + (0, 32., 60., 'circle', 1., '', '', 7, 'um', 1., 0., 0., 1.) + (0, 16., 80., 'circle', 1., '', '', 8, 'um', 1., 0., 0., 1.) + (0, 48., 80., 'circle', 1., '', '', 9, 'um', 1., 0., 0., 1.) + (0, 0., 100., 'circle', 1., '', '', 10, 'um', 1., 0., 0., 1.) + (0, 32., 100., 'circle', 1., '', '', 11, 'um', 1., 0., 0., 1.) + (0, 16., 120., 'circle', 1., '', '', 12, 'um', 1., 0., 0., 1.) + (0, 48., 120., 'circle', 1., '', '', 13, 'um', 1., 0., 0., 1.) + (0, 0., 140., 'circle', 1., '', '', 14, 'um', 1., 0., 0., 1.) + (0, 32., 140., 'circle', 1., '', '', 15, 'um', 1., 0., 0., 1.) + (0, 16., 160., 'circle', 1., '', '', 16, 'um', 1., 0., 0., 1.) + (0, 48., 160., 'circle', 1., '', '', 17, 'um', 1., 0., 0., 1.) + (0, 0., 180., 'circle', 1., '', '', 18, 'um', 1., 0., 0., 1.) + (0, 32., 180., 'circle', 1., '', '', 19, 'um', 1., 0., 0., 1.) + (0, 16., 200., 'circle', 1., '', '', 20, 'um', 1., 0., 0., 1.) + (0, 48., 200., 'circle', 1., '', '', 21, 'um', 1., 0., 0., 1.) + (0, 0., 220., 'circle', 1., '', '', 22, 'um', 1., 0., 0., 1.) + (0, 32., 220., 'circle', 1., '', '', 23, 'um', 1., 0., 0., 1.) + (0, 16., 240., 'circle', 1., '', '', 24, 'um', 1., 0., 0., 1.) + (0, 48., 240., 'circle', 1., '', '', 25, 'um', 1., 0., 0., 1.) + (0, 0., 260., 'circle', 1., '', '', 26, 'um', 1., 0., 0., 1.) + (0, 32., 260., 'circle', 1., '', '', 27, 'um', 1., 0., 0., 1.) + (0, 16., 280., 'circle', 1., '', '', 28, 'um', 1., 0., 0., 1.) + (0, 48., 280., 'circle', 1., '', '', 29, 'um', 1., 0., 0., 1.) + (0, 0., 300., 'circle', 1., '', '', 30, 'um', 1., 0., 0., 1.) + (0, 32., 300., 'circle', 1., '', '', 31, 'um', 1., 0., 0., 1.) + (0, 16., 320., 'circle', 1., '', '', 32, 'um', 1., 0., 0., 1.) + (0, 48., 320., 'circle', 1., '', '', 33, 'um', 1., 0., 0., 1.) + (0, 0., 340., 'circle', 1., '', '', 34, 'um', 1., 0., 0., 1.) + (0, 32., 340., 'circle', 1., '', '', 35, 'um', 1., 0., 0., 1.) + (0, 16., 360., 'circle', 1., '', '', 36, 'um', 1., 0., 0., 1.) + (0, 48., 360., 'circle', 1., '', '', 37, 'um', 1., 0., 0., 1.) + (0, 0., 380., 'circle', 1., '', '', 38, 'um', 1., 0., 0., 1.) + (0, 32., 380., 'circle', 1., '', '', 39, 'um', 1., 0., 0., 1.) + (0, 16., 400., 'circle', 1., '', '', 40, 'um', 1., 0., 0., 1.) + (0, 48., 400., 'circle', 1., '', '', 41, 'um', 1., 0., 0., 1.) + (0, 0., 420., 'circle', 1., '', '', 42, 'um', 1., 0., 0., 1.) + (0, 32., 420., 'circle', 1., '', '', 43, 'um', 1., 0., 0., 1.) + (0, 16., 440., 'circle', 1., '', '', 44, 'um', 1., 0., 0., 1.) + (0, 48., 440., 'circle', 1., '', '', 45, 'um', 1., 0., 0., 1.) + (0, 0., 460., 'circle', 1., '', '', 46, 'um', 1., 0., 0., 1.) + (0, 32., 460., 'circle', 1., '', '', 47, 'um', 1., 0., 0., 1.) + (0, 16., 480., 'circle', 1., '', '', 48, 'um', 1., 0., 0., 1.) + (0, 48., 480., 'circle', 1., '', '', 49, 'um', 1., 0., 0., 1.) + (0, 0., 500., 'circle', 1., '', '', 50, 'um', 1., 0., 0., 1.) + (0, 32., 500., 'circle', 1., '', '', 51, 'um', 1., 0., 0., 1.) + (0, 16., 520., 'circle', 1., '', '', 52, 'um', 1., 0., 0., 1.) + (0, 48., 520., 'circle', 1., '', '', 53, 'um', 1., 0., 0., 1.) + (0, 0., 540., 'circle', 1., '', '', 54, 'um', 1., 0., 0., 1.) + (0, 32., 540., 'circle', 1., '', '', 55, 'um', 1., 0., 0., 1.) + (0, 16., 560., 'circle', 1., '', '', 56, 'um', 1., 0., 0., 1.) + (0, 48., 560., 'circle', 1., '', '', 57, 'um', 1., 0., 0., 1.) + (0, 0., 580., 'circle', 1., '', '', 58, 'um', 1., 0., 0., 1.) + (0, 32., 580., 'circle', 1., '', '', 59, 'um', 1., 0., 0., 1.) + (0, 16., 600., 'circle', 1., '', '', 60, 'um', 1., 0., 0., 1.) + (0, 48., 600., 'circle', 1., '', '', 61, 'um', 1., 0., 0., 1.) + (0, 0., 620., 'circle', 1., '', '', 62, 'um', 1., 0., 0., 1.) + (0, 32., 620., 'circle', 1., '', '', 63, 'um', 1., 0., 0., 1.) + (0, 16., 640., 'circle', 1., '', '', 64, 'um', 1., 0., 0., 1.) + (0, 48., 640., 'circle', 1., '', '', 65, 'um', 1., 0., 0., 1.) + (0, 0., 660., 'circle', 1., '', '', 66, 'um', 1., 0., 0., 1.) + (0, 32., 660., 'circle', 1., '', '', 67, 'um', 1., 0., 0., 1.) + (0, 16., 680., 'circle', 1., '', '', 68, 'um', 1., 0., 0., 1.) + (0, 48., 680., 'circle', 1., '', '', 69, 'um', 1., 0., 0., 1.) + (0, 0., 700., 'circle', 1., '', '', 70, 'um', 1., 0., 0., 1.) + (0, 32., 700., 'circle', 1., '', '', 71, 'um', 1., 0., 0., 1.) + (0, 16., 720., 'circle', 1., '', '', 72, 'um', 1., 0., 0., 1.) + (0, 48., 720., 'circle', 1., '', '', 73, 'um', 1., 0., 0., 1.) + (0, 0., 740., 'circle', 1., '', '', 74, 'um', 1., 0., 0., 1.) + (0, 32., 740., 'circle', 1., '', '', 75, 'um', 1., 0., 0., 1.) + (0, 16., 760., 'circle', 1., '', '', 76, 'um', 1., 0., 0., 1.) + (0, 48., 760., 'circle', 1., '', '', 77, 'um', 1., 0., 0., 1.) + (0, 0., 780., 'circle', 1., '', '', 78, 'um', 1., 0., 0., 1.) + (0, 32., 780., 'circle', 1., '', '', 79, 'um', 1., 0., 0., 1.) + (0, 16., 800., 'circle', 1., '', '', 80, 'um', 1., 0., 0., 1.) + (0, 48., 800., 'circle', 1., '', '', 81, 'um', 1., 0., 0., 1.) + (0, 0., 820., 'circle', 1., '', '', 82, 'um', 1., 0., 0., 1.) + (0, 32., 820., 'circle', 1., '', '', 83, 'um', 1., 0., 0., 1.) + (0, 16., 840., 'circle', 1., '', '', 84, 'um', 1., 0., 0., 1.) + (0, 48., 840., 'circle', 1., '', '', 85, 'um', 1., 0., 0., 1.) + (0, 0., 860., 'circle', 1., '', '', 86, 'um', 1., 0., 0., 1.) + (0, 32., 860., 'circle', 1., '', '', 87, 'um', 1., 0., 0., 1.) + (0, 16., 880., 'circle', 1., '', '', 88, 'um', 1., 0., 0., 1.) + (0, 48., 880., 'circle', 1., '', '', 89, 'um', 1., 0., 0., 1.) + (0, 0., 900., 'circle', 1., '', '', 90, 'um', 1., 0., 0., 1.) + (0, 32., 900., 'circle', 1., '', '', 91, 'um', 1., 0., 0., 1.) + (0, 16., 920., 'circle', 1., '', '', 92, 'um', 1., 0., 0., 1.) + (0, 48., 920., 'circle', 1., '', '', 93, 'um', 1., 0., 0., 1.) + (0, 0., 940., 'circle', 1., '', '', 94, 'um', 1., 0., 0., 1.) + (0, 32., 940., 'circle', 1., '', '', 95, 'um', 1., 0., 0., 1.) + (0, 16., 960., 'circle', 1., '', '', 96, 'um', 1., 0., 0., 1.) + (0, 48., 960., 'circle', 1., '', '', 97, 'um', 1., 0., 0., 1.) + (0, 0., 980., 'circle', 1., '', '', 98, 'um', 1., 0., 0., 1.) + (0, 32., 980., 'circle', 1., '', '', 99, 'um', 1., 0., 0., 1.) + (0, 16., 1000., 'circle', 1., '', '', 100, 'um', 1., 0., 0., 1.) + (0, 48., 1000., 'circle', 1., '', '', 101, 'um', 1., 0., 0., 1.) + (0, 0., 1020., 'circle', 1., '', '', 102, 'um', 1., 0., 0., 1.) + (0, 32., 1020., 'circle', 1., '', '', 103, 'um', 1., 0., 0., 1.) + (0, 16., 1040., 'circle', 1., '', '', 104, 'um', 1., 0., 0., 1.) + (0, 48., 1040., 'circle', 1., '', '', 105, 'um', 1., 0., 0., 1.) + (0, 0., 1060., 'circle', 1., '', '', 106, 'um', 1., 0., 0., 1.) + (0, 32., 1060., 'circle', 1., '', '', 107, 'um', 1., 0., 0., 1.) + (0, 16., 1080., 'circle', 1., '', '', 108, 'um', 1., 0., 0., 1.) + (0, 48., 1080., 'circle', 1., '', '', 109, 'um', 1., 0., 0., 1.) + (0, 0., 1100., 'circle', 1., '', '', 110, 'um', 1., 0., 0., 1.) + (0, 32., 1100., 'circle', 1., '', '', 111, 'um', 1., 0., 0., 1.) + (0, 16., 1120., 'circle', 1., '', '', 112, 'um', 1., 0., 0., 1.) + (0, 48., 1120., 'circle', 1., '', '', 113, 'um', 1., 0., 0., 1.) + (0, 0., 1140., 'circle', 1., '', '', 114, 'um', 1., 0., 0., 1.) + (0, 32., 1140., 'circle', 1., '', '', 115, 'um', 1., 0., 0., 1.) + (0, 16., 1160., 'circle', 1., '', '', 116, 'um', 1., 0., 0., 1.) + (0, 48., 1160., 'circle', 1., '', '', 117, 'um', 1., 0., 0., 1.) + (0, 0., 1180., 'circle', 1., '', '', 118, 'um', 1., 0., 0., 1.) + (0, 32., 1180., 'circle', 1., '', '', 119, 'um', 1., 0., 0., 1.) + (0, 16., 1200., 'circle', 1., '', '', 120, 'um', 1., 0., 0., 1.) + (0, 48., 1200., 'circle', 1., '', '', 121, 'um', 1., 0., 0., 1.) + (0, 0., 1220., 'circle', 1., '', '', 122, 'um', 1., 0., 0., 1.) + (0, 32., 1220., 'circle', 1., '', '', 123, 'um', 1., 0., 0., 1.) + (0, 16., 1240., 'circle', 1., '', '', 124, 'um', 1., 0., 0., 1.) + (0, 48., 1240., 'circle', 1., '', '', 125, 'um', 1., 0., 0., 1.) + (0, 0., 1260., 'circle', 1., '', '', 126, 'um', 1., 0., 0., 1.) + (0, 32., 1260., 'circle', 1., '', '', 127, 'um', 1., 0., 0., 1.) + (0, 16., 1280., 'circle', 1., '', '', 128, 'um', 1., 0., 0., 1.) + (0, 48., 1280., 'circle', 1., '', '', 129, 'um', 1., 0., 0., 1.) + (0, 0., 1300., 'circle', 1., '', '', 130, 'um', 1., 0., 0., 1.) + (0, 32., 1300., 'circle', 1., '', '', 131, 'um', 1., 0., 0., 1.) + (0, 16., 1320., 'circle', 1., '', '', 132, 'um', 1., 0., 0., 1.) + (0, 48., 1320., 'circle', 1., '', '', 133, 'um', 1., 0., 0., 1.) + (0, 0., 1340., 'circle', 1., '', '', 134, 'um', 1., 0., 0., 1.) + (0, 32., 1340., 'circle', 1., '', '', 135, 'um', 1., 0., 0., 1.) + (0, 16., 1360., 'circle', 1., '', '', 136, 'um', 1., 0., 0., 1.) + (0, 48., 1360., 'circle', 1., '', '', 137, 'um', 1., 0., 0., 1.) + (0, 0., 1380., 'circle', 1., '', '', 138, 'um', 1., 0., 0., 1.) + (0, 32., 1380., 'circle', 1., '', '', 139, 'um', 1., 0., 0., 1.) + (0, 16., 1400., 'circle', 1., '', '', 140, 'um', 1., 0., 0., 1.) + (0, 48., 1400., 'circle', 1., '', '', 141, 'um', 1., 0., 0., 1.) + (0, 0., 1420., 'circle', 1., '', '', 142, 'um', 1., 0., 0., 1.) + (0, 32., 1420., 'circle', 1., '', '', 143, 'um', 1., 0., 0., 1.) + (0, 16., 1440., 'circle', 1., '', '', 144, 'um', 1., 0., 0., 1.) + (0, 48., 1440., 'circle', 1., '', '', 145, 'um', 1., 0., 0., 1.) + (0, 0., 1460., 'circle', 1., '', '', 146, 'um', 1., 0., 0., 1.) + (0, 32., 1460., 'circle', 1., '', '', 147, 'um', 1., 0., 0., 1.) + (0, 16., 1480., 'circle', 1., '', '', 148, 'um', 1., 0., 0., 1.) + (0, 48., 1480., 'circle', 1., '', '', 149, 'um', 1., 0., 0., 1.) + (0, 0., 1500., 'circle', 1., '', '', 150, 'um', 1., 0., 0., 1.) + (0, 32., 1500., 'circle', 1., '', '', 151, 'um', 1., 0., 0., 1.) + (0, 16., 1520., 'circle', 1., '', '', 152, 'um', 1., 0., 0., 1.) + (0, 48., 1520., 'circle', 1., '', '', 153, 'um', 1., 0., 0., 1.) + (0, 0., 1540., 'circle', 1., '', '', 154, 'um', 1., 0., 0., 1.) + (0, 32., 1540., 'circle', 1., '', '', 155, 'um', 1., 0., 0., 1.) + (0, 16., 1560., 'circle', 1., '', '', 156, 'um', 1., 0., 0., 1.) + (0, 48., 1560., 'circle', 1., '', '', 157, 'um', 1., 0., 0., 1.) + (0, 0., 1580., 'circle', 1., '', '', 158, 'um', 1., 0., 0., 1.) + (0, 32., 1580., 'circle', 1., '', '', 159, 'um', 1., 0., 0., 1.) + (0, 16., 1600., 'circle', 1., '', '', 160, 'um', 1., 0., 0., 1.) + (0, 48., 1600., 'circle', 1., '', '', 161, 'um', 1., 0., 0., 1.) + (0, 0., 1620., 'circle', 1., '', '', 162, 'um', 1., 0., 0., 1.) + (0, 32., 1620., 'circle', 1., '', '', 163, 'um', 1., 0., 0., 1.) + (0, 16., 1640., 'circle', 1., '', '', 164, 'um', 1., 0., 0., 1.) + (0, 48., 1640., 'circle', 1., '', '', 165, 'um', 1., 0., 0., 1.) + (0, 0., 1660., 'circle', 1., '', '', 166, 'um', 1., 0., 0., 1.) + (0, 32., 1660., 'circle', 1., '', '', 167, 'um', 1., 0., 0., 1.) + (0, 16., 1680., 'circle', 1., '', '', 168, 'um', 1., 0., 0., 1.) + (0, 48., 1680., 'circle', 1., '', '', 169, 'um', 1., 0., 0., 1.) + (0, 0., 1700., 'circle', 1., '', '', 170, 'um', 1., 0., 0., 1.) + (0, 32., 1700., 'circle', 1., '', '', 171, 'um', 1., 0., 0., 1.) + (0, 16., 1720., 'circle', 1., '', '', 172, 'um', 1., 0., 0., 1.) + (0, 48., 1720., 'circle', 1., '', '', 173, 'um', 1., 0., 0., 1.) + (0, 0., 1740., 'circle', 1., '', '', 174, 'um', 1., 0., 0., 1.) + (0, 32., 1740., 'circle', 1., '', '', 175, 'um', 1., 0., 0., 1.) + (0, 16., 1760., 'circle', 1., '', '', 176, 'um', 1., 0., 0., 1.) + (0, 48., 1760., 'circle', 1., '', '', 177, 'um', 1., 0., 0., 1.) + (0, 0., 1780., 'circle', 1., '', '', 178, 'um', 1., 0., 0., 1.) + (0, 32., 1780., 'circle', 1., '', '', 179, 'um', 1., 0., 0., 1.) + (0, 16., 1800., 'circle', 1., '', '', 180, 'um', 1., 0., 0., 1.) + (0, 48., 1800., 'circle', 1., '', '', 181, 'um', 1., 0., 0., 1.) + (0, 0., 1820., 'circle', 1., '', '', 182, 'um', 1., 0., 0., 1.) + (0, 32., 1820., 'circle', 1., '', '', 183, 'um', 1., 0., 0., 1.) + (0, 16., 1840., 'circle', 1., '', '', 184, 'um', 1., 0., 0., 1.) + (0, 48., 1840., 'circle', 1., '', '', 185, 'um', 1., 0., 0., 1.) + (0, 0., 1860., 'circle', 1., '', '', 186, 'um', 1., 0., 0., 1.) + (0, 32., 1860., 'circle', 1., '', '', 187, 'um', 1., 0., 0., 1.) + (0, 16., 1880., 'circle', 1., '', '', 188, 'um', 1., 0., 0., 1.) + (0, 48., 1880., 'circle', 1., '', '', 189, 'um', 1., 0., 0., 1.) + (0, 0., 1900., 'circle', 1., '', '', 190, 'um', 1., 0., 0., 1.) + (0, 32., 1900., 'circle', 1., '', '', 191, 'um', 1., 0., 0., 1.) + (0, 16., 1920., 'circle', 1., '', '', 192, 'um', 1., 0., 0., 1.) + (0, 48., 1920., 'circle', 1., '', '', 193, 'um', 1., 0., 0., 1.) + (0, 0., 1940., 'circle', 1., '', '', 194, 'um', 1., 0., 0., 1.) + (0, 32., 1940., 'circle', 1., '', '', 195, 'um', 1., 0., 0., 1.) + (0, 16., 1960., 'circle', 1., '', '', 196, 'um', 1., 0., 0., 1.) + (0, 48., 1960., 'circle', 1., '', '', 197, 'um', 1., 0., 0., 1.) + (0, 0., 1980., 'circle', 1., '', '', 198, 'um', 1., 0., 0., 1.) + (0, 32., 1980., 'circle', 1., '', '', 199, 'um', 1., 0., 0., 1.) + (0, 16., 2000., 'circle', 1., '', '', 200, 'um', 1., 0., 0., 1.) + (0, 48., 2000., 'circle', 1., '', '', 201, 'um', 1., 0., 0., 1.) + (0, 0., 2020., 'circle', 1., '', '', 202, 'um', 1., 0., 0., 1.) + (0, 32., 2020., 'circle', 1., '', '', 203, 'um', 1., 0., 0., 1.) + (0, 16., 2040., 'circle', 1., '', '', 204, 'um', 1., 0., 0., 1.) + (0, 48., 2040., 'circle', 1., '', '', 205, 'um', 1., 0., 0., 1.) + (0, 0., 2060., 'circle', 1., '', '', 206, 'um', 1., 0., 0., 1.) + (0, 32., 2060., 'circle', 1., '', '', 207, 'um', 1., 0., 0., 1.) + (0, 16., 2080., 'circle', 1., '', '', 208, 'um', 1., 0., 0., 1.) + (0, 48., 2080., 'circle', 1., '', '', 209, 'um', 1., 0., 0., 1.) + (0, 0., 2100., 'circle', 1., '', '', 210, 'um', 1., 0., 0., 1.) + (0, 32., 2100., 'circle', 1., '', '', 211, 'um', 1., 0., 0., 1.) + (0, 16., 2120., 'circle', 1., '', '', 212, 'um', 1., 0., 0., 1.) + (0, 48., 2120., 'circle', 1., '', '', 213, 'um', 1., 0., 0., 1.) + (0, 0., 2140., 'circle', 1., '', '', 214, 'um', 1., 0., 0., 1.) + (0, 32., 2140., 'circle', 1., '', '', 215, 'um', 1., 0., 0., 1.) + (0, 16., 2160., 'circle', 1., '', '', 216, 'um', 1., 0., 0., 1.) + (0, 48., 2160., 'circle', 1., '', '', 217, 'um', 1., 0., 0., 1.) + (0, 0., 2180., 'circle', 1., '', '', 218, 'um', 1., 0., 0., 1.) + (0, 32., 2180., 'circle', 1., '', '', 219, 'um', 1., 0., 0., 1.) + (0, 16., 2200., 'circle', 1., '', '', 220, 'um', 1., 0., 0., 1.) + (0, 48., 2200., 'circle', 1., '', '', 221, 'um', 1., 0., 0., 1.) + (0, 0., 2220., 'circle', 1., '', '', 222, 'um', 1., 0., 0., 1.) + (0, 32., 2220., 'circle', 1., '', '', 223, 'um', 1., 0., 0., 1.) + (0, 16., 2240., 'circle', 1., '', '', 224, 'um', 1., 0., 0., 1.) + (0, 48., 2240., 'circle', 1., '', '', 225, 'um', 1., 0., 0., 1.) + (0, 0., 2260., 'circle', 1., '', '', 226, 'um', 1., 0., 0., 1.) + (0, 32., 2260., 'circle', 1., '', '', 227, 'um', 1., 0., 0., 1.) + (0, 16., 2280., 'circle', 1., '', '', 228, 'um', 1., 0., 0., 1.) + (0, 48., 2280., 'circle', 1., '', '', 229, 'um', 1., 0., 0., 1.) + (0, 0., 2300., 'circle', 1., '', '', 230, 'um', 1., 0., 0., 1.) + (0, 32., 2300., 'circle', 1., '', '', 231, 'um', 1., 0., 0., 1.) + (0, 16., 2320., 'circle', 1., '', '', 232, 'um', 1., 0., 0., 1.) + (0, 48., 2320., 'circle', 1., '', '', 233, 'um', 1., 0., 0., 1.) + (0, 0., 2340., 'circle', 1., '', '', 234, 'um', 1., 0., 0., 1.) + (0, 32., 2340., 'circle', 1., '', '', 235, 'um', 1., 0., 0., 1.) + (0, 16., 2360., 'circle', 1., '', '', 236, 'um', 1., 0., 0., 1.) + (0, 48., 2360., 'circle', 1., '', '', 237, 'um', 1., 0., 0., 1.) + (0, 0., 2380., 'circle', 1., '', '', 238, 'um', 1., 0., 0., 1.) + (0, 32., 2380., 'circle', 1., '', '', 239, 'um', 1., 0., 0., 1.) + (0, 16., 2400., 'circle', 1., '', '', 240, 'um', 1., 0., 0., 1.) + (0, 48., 2400., 'circle', 1., '', '', 241, 'um', 1., 0., 0., 1.) + (0, 0., 2420., 'circle', 1., '', '', 242, 'um', 1., 0., 0., 1.) + (0, 32., 2420., 'circle', 1., '', '', 243, 'um', 1., 0., 0., 1.) + (0, 16., 2440., 'circle', 1., '', '', 244, 'um', 1., 0., 0., 1.) + (0, 48., 2440., 'circle', 1., '', '', 245, 'um', 1., 0., 0., 1.) + (0, 0., 2460., 'circle', 1., '', '', 246, 'um', 1., 0., 0., 1.) + (0, 32., 2460., 'circle', 1., '', '', 247, 'um', 1., 0., 0., 1.) + (0, 16., 2480., 'circle', 1., '', '', 248, 'um', 1., 0., 0., 1.) + (0, 48., 2480., 'circle', 1., '', '', 249, 'um', 1., 0., 0., 1.) + (0, 0., 2500., 'circle', 1., '', '', 250, 'um', 1., 0., 0., 1.) + (0, 32., 2500., 'circle', 1., '', '', 251, 'um', 1., 0., 0., 1.) + (0, 16., 2520., 'circle', 1., '', '', 252, 'um', 1., 0., 0., 1.) + (0, 48., 2520., 'circle', 1., '', '', 253, 'um', 1., 0., 0., 1.) + (0, 0., 2540., 'circle', 1., '', '', 254, 'um', 1., 0., 0., 1.) + (0, 32., 2540., 'circle', 1., '', '', 255, 'um', 1., 0., 0., 1.) + (0, 16., 2560., 'circle', 1., '', '', 256, 'um', 1., 0., 0., 1.) + (0, 48., 2560., 'circle', 1., '', '', 257, 'um', 1., 0., 0., 1.) + (0, 0., 2580., 'circle', 1., '', '', 258, 'um', 1., 0., 0., 1.) + (0, 32., 2580., 'circle', 1., '', '', 259, 'um', 1., 0., 0., 1.) + (0, 16., 2600., 'circle', 1., '', '', 260, 'um', 1., 0., 0., 1.) + (0, 48., 2600., 'circle', 1., '', '', 261, 'um', 1., 0., 0., 1.) + (0, 0., 2620., 'circle', 1., '', '', 262, 'um', 1., 0., 0., 1.) + (0, 32., 2620., 'circle', 1., '', '', 263, 'um', 1., 0., 0., 1.) + (0, 16., 2640., 'circle', 1., '', '', 264, 'um', 1., 0., 0., 1.) + (0, 48., 2640., 'circle', 1., '', '', 265, 'um', 1., 0., 0., 1.) + (0, 0., 2660., 'circle', 1., '', '', 266, 'um', 1., 0., 0., 1.) + (0, 32., 2660., 'circle', 1., '', '', 267, 'um', 1., 0., 0., 1.) + (0, 16., 2680., 'circle', 1., '', '', 268, 'um', 1., 0., 0., 1.) + (0, 48., 2680., 'circle', 1., '', '', 269, 'um', 1., 0., 0., 1.) + (0, 0., 2700., 'circle', 1., '', '', 270, 'um', 1., 0., 0., 1.) + (0, 32., 2700., 'circle', 1., '', '', 271, 'um', 1., 0., 0., 1.) + (0, 16., 2720., 'circle', 1., '', '', 272, 'um', 1., 0., 0., 1.) + (0, 48., 2720., 'circle', 1., '', '', 273, 'um', 1., 0., 0., 1.) + (0, 0., 2740., 'circle', 1., '', '', 274, 'um', 1., 0., 0., 1.) + (0, 32., 2740., 'circle', 1., '', '', 275, 'um', 1., 0., 0., 1.) + (0, 16., 2760., 'circle', 1., '', '', 276, 'um', 1., 0., 0., 1.) + (0, 48., 2760., 'circle', 1., '', '', 277, 'um', 1., 0., 0., 1.) + (0, 0., 2780., 'circle', 1., '', '', 278, 'um', 1., 0., 0., 1.) + (0, 32., 2780., 'circle', 1., '', '', 279, 'um', 1., 0., 0., 1.) + (0, 16., 2800., 'circle', 1., '', '', 280, 'um', 1., 0., 0., 1.) + (0, 48., 2800., 'circle', 1., '', '', 281, 'um', 1., 0., 0., 1.) + (0, 0., 2820., 'circle', 1., '', '', 282, 'um', 1., 0., 0., 1.) + (0, 32., 2820., 'circle', 1., '', '', 283, 'um', 1., 0., 0., 1.) + (0, 16., 2840., 'circle', 1., '', '', 284, 'um', 1., 0., 0., 1.) + (0, 48., 2840., 'circle', 1., '', '', 285, 'um', 1., 0., 0., 1.) + (0, 0., 2860., 'circle', 1., '', '', 286, 'um', 1., 0., 0., 1.) + (0, 32., 2860., 'circle', 1., '', '', 287, 'um', 1., 0., 0., 1.) + (0, 16., 2880., 'circle', 1., '', '', 288, 'um', 1., 0., 0., 1.) + (0, 48., 2880., 'circle', 1., '', '', 289, 'um', 1., 0., 0., 1.) + (0, 0., 2900., 'circle', 1., '', '', 290, 'um', 1., 0., 0., 1.) + (0, 32., 2900., 'circle', 1., '', '', 291, 'um', 1., 0., 0., 1.) + (0, 16., 2920., 'circle', 1., '', '', 292, 'um', 1., 0., 0., 1.) + (0, 48., 2920., 'circle', 1., '', '', 293, 'um', 1., 0., 0., 1.) + (0, 0., 2940., 'circle', 1., '', '', 294, 'um', 1., 0., 0., 1.) + (0, 32., 2940., 'circle', 1., '', '', 295, 'um', 1., 0., 0., 1.) + (0, 16., 2960., 'circle', 1., '', '', 296, 'um', 1., 0., 0., 1.) + (0, 48., 2960., 'circle', 1., '', '', 297, 'um', 1., 0., 0., 1.) + (0, 0., 2980., 'circle', 1., '', '', 298, 'um', 1., 0., 0., 1.) + (0, 32., 2980., 'circle', 1., '', '', 299, 'um', 1., 0., 0., 1.) + (0, 16., 3000., 'circle', 1., '', '', 300, 'um', 1., 0., 0., 1.) + (0, 48., 3000., 'circle', 1., '', '', 301, 'um', 1., 0., 0., 1.) + (0, 0., 3020., 'circle', 1., '', '', 302, 'um', 1., 0., 0., 1.) + (0, 32., 3020., 'circle', 1., '', '', 303, 'um', 1., 0., 0., 1.) + (0, 16., 3040., 'circle', 1., '', '', 304, 'um', 1., 0., 0., 1.) + (0, 48., 3040., 'circle', 1., '', '', 305, 'um', 1., 0., 0., 1.) + (0, 0., 3060., 'circle', 1., '', '', 306, 'um', 1., 0., 0., 1.) + (0, 32., 3060., 'circle', 1., '', '', 307, 'um', 1., 0., 0., 1.) + (0, 16., 3080., 'circle', 1., '', '', 308, 'um', 1., 0., 0., 1.) + (0, 48., 3080., 'circle', 1., '', '', 309, 'um', 1., 0., 0., 1.) + (0, 0., 3100., 'circle', 1., '', '', 310, 'um', 1., 0., 0., 1.) + (0, 32., 3100., 'circle', 1., '', '', 311, 'um', 1., 0., 0., 1.) + (0, 16., 3120., 'circle', 1., '', '', 312, 'um', 1., 0., 0., 1.) + (0, 48., 3120., 'circle', 1., '', '', 313, 'um', 1., 0., 0., 1.) + (0, 0., 3140., 'circle', 1., '', '', 314, 'um', 1., 0., 0., 1.) + (0, 32., 3140., 'circle', 1., '', '', 315, 'um', 1., 0., 0., 1.) + (0, 16., 3160., 'circle', 1., '', '', 316, 'um', 1., 0., 0., 1.) + (0, 48., 3160., 'circle', 1., '', '', 317, 'um', 1., 0., 0., 1.) + (0, 0., 3180., 'circle', 1., '', '', 318, 'um', 1., 0., 0., 1.) + (0, 32., 3180., 'circle', 1., '', '', 319, 'um', 1., 0., 0., 1.) + (0, 16., 3200., 'circle', 1., '', '', 320, 'um', 1., 0., 0., 1.) + (0, 48., 3200., 'circle', 1., '', '', 321, 'um', 1., 0., 0., 1.) + (0, 0., 3220., 'circle', 1., '', '', 322, 'um', 1., 0., 0., 1.) + (0, 32., 3220., 'circle', 1., '', '', 323, 'um', 1., 0., 0., 1.) + (0, 16., 3240., 'circle', 1., '', '', 324, 'um', 1., 0., 0., 1.) + (0, 48., 3240., 'circle', 1., '', '', 325, 'um', 1., 0., 0., 1.) + (0, 0., 3260., 'circle', 1., '', '', 326, 'um', 1., 0., 0., 1.) + (0, 32., 3260., 'circle', 1., '', '', 327, 'um', 1., 0., 0., 1.) + (0, 16., 3280., 'circle', 1., '', '', 328, 'um', 1., 0., 0., 1.) + (0, 48., 3280., 'circle', 1., '', '', 329, 'um', 1., 0., 0., 1.) + (0, 0., 3300., 'circle', 1., '', '', 330, 'um', 1., 0., 0., 1.) + (0, 32., 3300., 'circle', 1., '', '', 331, 'um', 1., 0., 0., 1.) + (0, 16., 3320., 'circle', 1., '', '', 332, 'um', 1., 0., 0., 1.) + (0, 48., 3320., 'circle', 1., '', '', 333, 'um', 1., 0., 0., 1.) + (0, 0., 3340., 'circle', 1., '', '', 334, 'um', 1., 0., 0., 1.) + (0, 32., 3340., 'circle', 1., '', '', 335, 'um', 1., 0., 0., 1.) + (0, 16., 3360., 'circle', 1., '', '', 336, 'um', 1., 0., 0., 1.) + (0, 48., 3360., 'circle', 1., '', '', 337, 'um', 1., 0., 0., 1.) + (0, 0., 3380., 'circle', 1., '', '', 338, 'um', 1., 0., 0., 1.) + (0, 32., 3380., 'circle', 1., '', '', 339, 'um', 1., 0., 0., 1.) + (0, 16., 3400., 'circle', 1., '', '', 340, 'um', 1., 0., 0., 1.) + (0, 48., 3400., 'circle', 1., '', '', 341, 'um', 1., 0., 0., 1.) + (0, 0., 3420., 'circle', 1., '', '', 342, 'um', 1., 0., 0., 1.) + (0, 32., 3420., 'circle', 1., '', '', 343, 'um', 1., 0., 0., 1.) + (0, 16., 3440., 'circle', 1., '', '', 344, 'um', 1., 0., 0., 1.) + (0, 48., 3440., 'circle', 1., '', '', 345, 'um', 1., 0., 0., 1.) + (0, 0., 3460., 'circle', 1., '', '', 346, 'um', 1., 0., 0., 1.) + (0, 32., 3460., 'circle', 1., '', '', 347, 'um', 1., 0., 0., 1.) + (0, 16., 3480., 'circle', 1., '', '', 348, 'um', 1., 0., 0., 1.) + (0, 48., 3480., 'circle', 1., '', '', 349, 'um', 1., 0., 0., 1.) + (0, 0., 3500., 'circle', 1., '', '', 350, 'um', 1., 0., 0., 1.) + (0, 32., 3500., 'circle', 1., '', '', 351, 'um', 1., 0., 0., 1.) + (0, 16., 3520., 'circle', 1., '', '', 352, 'um', 1., 0., 0., 1.) + (0, 48., 3520., 'circle', 1., '', '', 353, 'um', 1., 0., 0., 1.) + (0, 0., 3540., 'circle', 1., '', '', 354, 'um', 1., 0., 0., 1.) + (0, 32., 3540., 'circle', 1., '', '', 355, 'um', 1., 0., 0., 1.) + (0, 16., 3560., 'circle', 1., '', '', 356, 'um', 1., 0., 0., 1.) + (0, 48., 3560., 'circle', 1., '', '', 357, 'um', 1., 0., 0., 1.) + (0, 0., 3580., 'circle', 1., '', '', 358, 'um', 1., 0., 0., 1.) + (0, 32., 3580., 'circle', 1., '', '', 359, 'um', 1., 0., 0., 1.) + (0, 16., 3600., 'circle', 1., '', '', 360, 'um', 1., 0., 0., 1.) + (0, 48., 3600., 'circle', 1., '', '', 361, 'um', 1., 0., 0., 1.) + (0, 0., 3620., 'circle', 1., '', '', 362, 'um', 1., 0., 0., 1.) + (0, 32., 3620., 'circle', 1., '', '', 363, 'um', 1., 0., 0., 1.) + (0, 16., 3640., 'circle', 1., '', '', 364, 'um', 1., 0., 0., 1.) + (0, 48., 3640., 'circle', 1., '', '', 365, 'um', 1., 0., 0., 1.) + (0, 0., 3660., 'circle', 1., '', '', 366, 'um', 1., 0., 0., 1.) + (0, 32., 3660., 'circle', 1., '', '', 367, 'um', 1., 0., 0., 1.) + (0, 16., 3680., 'circle', 1., '', '', 368, 'um', 1., 0., 0., 1.) + (0, 48., 3680., 'circle', 1., '', '', 369, 'um', 1., 0., 0., 1.) + (0, 0., 3700., 'circle', 1., '', '', 370, 'um', 1., 0., 0., 1.) + (0, 32., 3700., 'circle', 1., '', '', 371, 'um', 1., 0., 0., 1.) + (0, 16., 3720., 'circle', 1., '', '', 372, 'um', 1., 0., 0., 1.) + (0, 48., 3720., 'circle', 1., '', '', 373, 'um', 1., 0., 0., 1.) + (0, 0., 3740., 'circle', 1., '', '', 374, 'um', 1., 0., 0., 1.) + (0, 32., 3740., 'circle', 1., '', '', 375, 'um', 1., 0., 0., 1.) + (0, 16., 3760., 'circle', 1., '', '', 376, 'um', 1., 0., 0., 1.) + (0, 48., 3760., 'circle', 1., '', '', 377, 'um', 1., 0., 0., 1.) + (0, 0., 3780., 'circle', 1., '', '', 378, 'um', 1., 0., 0., 1.) + (0, 32., 3780., 'circle', 1., '', '', 379, 'um', 1., 0., 0., 1.) + (0, 16., 3800., 'circle', 1., '', '', 380, 'um', 1., 0., 0., 1.) + (0, 48., 3800., 'circle', 1., '', '', 381, 'um', 1., 0., 0., 1.) + (0, 0., 3820., 'circle', 1., '', '', 382, 'um', 1., 0., 0., 1.) + (0, 32., 3820., 'circle', 1., '', '', 383, 'um', 1., 0., 0., 1.)]
    location [[ 16. 0.] + [ 48. 0.] + [ 0. 20.] + [ 32. 20.] + [ 16. 40.] + [ 48. 40.] + [ 0. 60.] + [ 32. 60.] + [ 16. 80.] + [ 48. 80.] + [ 0. 100.] + [ 32. 100.] + [ 16. 120.] + [ 48. 120.] + [ 0. 140.] + [ 32. 140.] + [ 16. 160.] + [ 48. 160.] + [ 0. 180.] + [ 32. 180.] + [ 16. 200.] + [ 48. 200.] + [ 0. 220.] + [ 32. 220.] + [ 16. 240.] + [ 48. 240.] + [ 0. 260.] + [ 32. 260.] + [ 16. 280.] + [ 48. 280.] + [ 0. 300.] + [ 32. 300.] + [ 16. 320.] + [ 48. 320.] + [ 0. 340.] + [ 32. 340.] + [ 16. 360.] + [ 48. 360.] + [ 0. 380.] + [ 32. 380.] + [ 16. 400.] + [ 48. 400.] + [ 0. 420.] + [ 32. 420.] + [ 16. 440.] + [ 48. 440.] + [ 0. 460.] + [ 32. 460.] + [ 16. 480.] + [ 48. 480.] + [ 0. 500.] + [ 32. 500.] + [ 16. 520.] + [ 48. 520.] + [ 0. 540.] + [ 32. 540.] + [ 16. 560.] + [ 48. 560.] + [ 0. 580.] + [ 32. 580.] + [ 16. 600.] + [ 48. 600.] + [ 0. 620.] + [ 32. 620.] + [ 16. 640.] + [ 48. 640.] + [ 0. 660.] + [ 32. 660.] + [ 16. 680.] + [ 48. 680.] + [ 0. 700.] + [ 32. 700.] + [ 16. 720.] + [ 48. 720.] + [ 0. 740.] + [ 32. 740.] + [ 16. 760.] + [ 48. 760.] + [ 0. 780.] + [ 32. 780.] + [ 16. 800.] + [ 48. 800.] + [ 0. 820.] + [ 32. 820.] + [ 16. 840.] + [ 48. 840.] + [ 0. 860.] + [ 32. 860.] + [ 16. 880.] + [ 48. 880.] + [ 0. 900.] + [ 32. 900.] + [ 16. 920.] + [ 48. 920.] + [ 0. 940.] + [ 32. 940.] + [ 16. 960.] + [ 48. 960.] + [ 0. 980.] + [ 32. 980.] + [ 16. 1000.] + [ 48. 1000.] + [ 0. 1020.] + [ 32. 1020.] + [ 16. 1040.] + [ 48. 1040.] + [ 0. 1060.] + [ 32. 1060.] + [ 16. 1080.] + [ 48. 1080.] + [ 0. 1100.] + [ 32. 1100.] + [ 16. 1120.] + [ 48. 1120.] + [ 0. 1140.] + [ 32. 1140.] + [ 16. 1160.] + [ 48. 1160.] + [ 0. 1180.] + [ 32. 1180.] + [ 16. 1200.] + [ 48. 1200.] + [ 0. 1220.] + [ 32. 1220.] + [ 16. 1240.] + [ 48. 1240.] + [ 0. 1260.] + [ 32. 1260.] + [ 16. 1280.] + [ 48. 1280.] + [ 0. 1300.] + [ 32. 1300.] + [ 16. 1320.] + [ 48. 1320.] + [ 0. 1340.] + [ 32. 1340.] + [ 16. 1360.] + [ 48. 1360.] + [ 0. 1380.] + [ 32. 1380.] + [ 16. 1400.] + [ 48. 1400.] + [ 0. 1420.] + [ 32. 1420.] + [ 16. 1440.] + [ 48. 1440.] + [ 0. 1460.] + [ 32. 1460.] + [ 16. 1480.] + [ 48. 1480.] + [ 0. 1500.] + [ 32. 1500.] + [ 16. 1520.] + [ 48. 1520.] + [ 0. 1540.] + [ 32. 1540.] + [ 16. 1560.] + [ 48. 1560.] + [ 0. 1580.] + [ 32. 1580.] + [ 16. 1600.] + [ 48. 1600.] + [ 0. 1620.] + [ 32. 1620.] + [ 16. 1640.] + [ 48. 1640.] + [ 0. 1660.] + [ 32. 1660.] + [ 16. 1680.] + [ 48. 1680.] + [ 0. 1700.] + [ 32. 1700.] + [ 16. 1720.] + [ 48. 1720.] + [ 0. 1740.] + [ 32. 1740.] + [ 16. 1760.] + [ 48. 1760.] + [ 0. 1780.] + [ 32. 1780.] + [ 16. 1800.] + [ 48. 1800.] + [ 0. 1820.] + [ 32. 1820.] + [ 16. 1840.] + [ 48. 1840.] + [ 0. 1860.] + [ 32. 1860.] + [ 16. 1880.] + [ 48. 1880.] + [ 0. 1900.] + [ 32. 1900.] + [ 16. 1920.] + [ 48. 1920.] + [ 0. 1940.] + [ 32. 1940.] + [ 16. 1960.] + [ 48. 1960.] + [ 0. 1980.] + [ 32. 1980.] + [ 16. 2000.] + [ 48. 2000.] + [ 0. 2020.] + [ 32. 2020.] + [ 16. 2040.] + [ 48. 2040.] + [ 0. 2060.] + [ 32. 2060.] + [ 16. 2080.] + [ 48. 2080.] + [ 0. 2100.] + [ 32. 2100.] + [ 16. 2120.] + [ 48. 2120.] + [ 0. 2140.] + [ 32. 2140.] + [ 16. 2160.] + [ 48. 2160.] + [ 0. 2180.] + [ 32. 2180.] + [ 16. 2200.] + [ 48. 2200.] + [ 0. 2220.] + [ 32. 2220.] + [ 16. 2240.] + [ 48. 2240.] + [ 0. 2260.] + [ 32. 2260.] + [ 16. 2280.] + [ 48. 2280.] + [ 0. 2300.] + [ 32. 2300.] + [ 16. 2320.] + [ 48. 2320.] + [ 0. 2340.] + [ 32. 2340.] + [ 16. 2360.] + [ 48. 2360.] + [ 0. 2380.] + [ 32. 2380.] + [ 16. 2400.] + [ 48. 2400.] + [ 0. 2420.] + [ 32. 2420.] + [ 16. 2440.] + [ 48. 2440.] + [ 0. 2460.] + [ 32. 2460.] + [ 16. 2480.] + [ 48. 2480.] + [ 0. 2500.] + [ 32. 2500.] + [ 16. 2520.] + [ 48. 2520.] + [ 0. 2540.] + [ 32. 2540.] + [ 16. 2560.] + [ 48. 2560.] + [ 0. 2580.] + [ 32. 2580.] + [ 16. 2600.] + [ 48. 2600.] + [ 0. 2620.] + [ 32. 2620.] + [ 16. 2640.] + [ 48. 2640.] + [ 0. 2660.] + [ 32. 2660.] + [ 16. 2680.] + [ 48. 2680.] + [ 0. 2700.] + [ 32. 2700.] + [ 16. 2720.] + [ 48. 2720.] + [ 0. 2740.] + [ 32. 2740.] + [ 16. 2760.] + [ 48. 2760.] + [ 0. 2780.] + [ 32. 2780.] + [ 16. 2800.] + [ 48. 2800.] + [ 0. 2820.] + [ 32. 2820.] + [ 16. 2840.] + [ 48. 2840.] + [ 0. 2860.] + [ 32. 2860.] + [ 16. 2880.] + [ 48. 2880.] + [ 0. 2900.] + [ 32. 2900.] + [ 16. 2920.] + [ 48. 2920.] + [ 0. 2940.] + [ 32. 2940.] + [ 16. 2960.] + [ 48. 2960.] + [ 0. 2980.] + [ 32. 2980.] + [ 16. 3000.] + [ 48. 3000.] + [ 0. 3020.] + [ 32. 3020.] + [ 16. 3040.] + [ 48. 3040.] + [ 0. 3060.] + [ 32. 3060.] + [ 16. 3080.] + [ 48. 3080.] + [ 0. 3100.] + [ 32. 3100.] + [ 16. 3120.] + [ 48. 3120.] + [ 0. 3140.] + [ 32. 3140.] + [ 16. 3160.] + [ 48. 3160.] + [ 0. 3180.] + [ 32. 3180.] + [ 16. 3200.] + [ 48. 3200.] + [ 0. 3220.] + [ 32. 3220.] + [ 16. 3240.] + [ 48. 3240.] + [ 0. 3260.] + [ 32. 3260.] + [ 16. 3280.] + [ 48. 3280.] + [ 0. 3300.] + [ 32. 3300.] + [ 16. 3320.] + [ 48. 3320.] + [ 0. 3340.] + [ 32. 3340.] + [ 16. 3360.] + [ 48. 3360.] + [ 0. 3380.] + [ 32. 3380.] + [ 16. 3400.] + [ 48. 3400.] + [ 0. 3420.] + [ 32. 3420.] + [ 16. 3440.] + [ 48. 3440.] + [ 0. 3460.] + [ 32. 3460.] + [ 16. 3480.] + [ 48. 3480.] + [ 0. 3500.] + [ 32. 3500.] + [ 16. 3520.] + [ 48. 3520.] + [ 0. 3540.] + [ 32. 3540.] + [ 16. 3560.] + [ 48. 3560.] + [ 0. 3580.] + [ 32. 3580.] + [ 16. 3600.] + [ 48. 3600.] + [ 0. 3620.] + [ 32. 3620.] + [ 16. 3640.] + [ 48. 3640.] + [ 0. 3660.] + [ 32. 3660.] + [ 16. 3680.] + [ 48. 3680.] + [ 0. 3700.] + [ 32. 3700.] + [ 16. 3720.] + [ 48. 3720.] + [ 0. 3740.] + [ 32. 3740.] + [ 16. 3760.] + [ 48. 3760.] + [ 0. 3780.] + [ 32. 3780.] + [ 16. 3800.] + [ 48. 3800.] + [ 0. 3820.] + [ 32. 3820.]]
    group [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
    inter_sample_shift [0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385 + 0. 0. 0.07692308 0.07692308 0.15384615 0.15384615 + 0.23076923 0.23076923 0.30769231 0.30769231 0.38461538 0.38461538 + 0.46153846 0.46153846 0.53846154 0.53846154 0.61538462 0.61538462 + 0.69230769 0.69230769 0.76923077 0.76923077 0.84615385 0.84615385]
+ + + +We can use the ``SortingAnalyzer`` to estimate spike locations and plot +them: + +.. code:: ipython3 + + # construct analyzers and compute spike locations + analyzer_hybrid_ignore_drift = si.create_sorting_analyzer(sorting_hybrid, recording_hybrid_ignore_drift) + analyzer_hybrid_ignore_drift.compute(["random_spikes", "templates"]) + analyzer_hybrid_ignore_drift.compute("spike_locations", method="grid_convolution") + + analyzer_hybrid_with_drift = si.create_sorting_analyzer(sorting_hybrid, recording_hybrid_with_drift) + analyzer_hybrid_with_drift.compute(["random_spikes", "templates"]) + analyzer_hybrid_with_drift.compute("spike_locations", method="grid_convolution") + + + +.. parsed-literal:: + + estimate_sparsity: 0%| | 0/1958 [00:00>> jupytext --to notebook get_started.py +>>> jupytext --set-formats ipynb,py get_started.ipynb ``` 2. Run the notebook +3. Sync the run notebook to the .py file: -3. Convert the notebook to .rst +``` +>>> jupytext --sync get_started.ipynb +``` + +4. Convert the notebook to .rst ``` >>> jupyter nbconvert get_started.ipynb --to rst ->>> jupyter nbconvert analyse_neuropixels.ipynb --to rst ``` - -4. Move the .rst and associated folder (e.g. `get_started.rst` and `get_started_files` folder) to the `doc/how_to`. +5. Move the .rst and associated folder (e.g. `get_started.rst` and `get_started_files` folder) to the `doc/how_to`. diff --git a/examples/how_to/analyse_neuropixels.py b/examples/how_to/analyze_neuropixels.py similarity index 99% rename from examples/how_to/analyse_neuropixels.py rename to examples/how_to/analyze_neuropixels.py index ce5bacdda0..aeee8b15b4 100644 --- a/examples/how_to/analyse_neuropixels.py +++ b/examples/how_to/analyze_neuropixels.py @@ -14,7 +14,7 @@ # name: python3 # --- -# # Analyse Neuropixels datasets +# # Analyze Neuropixels datasets # # This example shows how to perform Neuropixels-specific analysis, including custom pre- and post-processing. diff --git a/examples/how_to/benchmark_with_hybrid_recordings.py b/examples/how_to/benchmark_with_hybrid_recordings.py new file mode 100644 index 0000000000..5507ab7a7f --- /dev/null +++ b/examples/how_to/benchmark_with_hybrid_recordings.py @@ -0,0 +1,293 @@ +# --- +# jupyter: +# jupytext: +# cell_metadata_filter: -all +# formats: ipynb,py +# text_representation: +# extension: .py +# format_name: light +# format_version: '1.5' +# jupytext_version: 1.16.2 +# kernelspec: +# display_name: Python 3 (ipykernel) +# language: python +# name: python3 +# --- + +# # Benchmark spike sorting with hybrid recordings +# +# This example shows how to use the SpikeInterface hybrid recordings framework to benchmark spike sorting results. +# +# Hybrid recordings are built from existing recordings by injecting units with known spiking activity. +# The template (aka average waveforms) of the injected units can be from previous spike sorted data. +# In this example, we will be using an open database of templates that we have constructed from the International Brain Laboratory - Brain Wide Map (available on [DANDI](https://dandiarchive.org/dandiset/000409?search=IBL&page=2&sortOption=0&sortDir=-1&showDrafts=true&showEmpty=false&pos=9)). +# +# Importantly, recordings from long-shank probes, such as Neuropixels, usually experience drifts. Such drifts have to be taken into account in order to smoothly inject spikes into the recording. + +# + +import spikeinterface as si +import spikeinterface.extractors as se +import spikeinterface.preprocessing as spre +import spikeinterface.comparison as sc +import spikeinterface.generation as sgen +import spikeinterface.widgets as sw + +from spikeinterface.sortingcomponents.motion_estimation import estimate_motion + +import numpy as np +import matplotlib.pyplot as plt +from pathlib import Path +# - + +# %matplotlib inline + +si.set_global_job_kwargs(n_jobs=16) + +# For this notebook, we will use a drifting recording similar to the one acquired by Nick Steinmetz and available [here](https://doi.org/10.6084/m9.figshare.14024495.v1), where an triangular motion was imposed to the recording by moving the probe up and down with a micro-manipulator. + +workdir = Path("/ssd980/working/hybrid/steinmetz_imposed_motion") +workdir.mkdir(exist_ok=True) + +recording_np1_imposed = se.read_spikeglx("/hdd1/data/spikeglx/nick-steinmetz/dataset1/p1_g0_t0/") +recording_preproc = spre.highpass_filter(recording_np1_imposed) +recording_preproc = spre.common_reference(recording_preproc) + +# To visualize the drift, we can estimate the motion and plot it: + +# to correct for drift, we need a float dtype +recording_preproc = spre.astype(recording_preproc, "float") +_, motion_info = spre.correct_motion( + recording_preproc, preset="nonrigid_fast_and_accurate", n_jobs=4, progress_bar=True, output_motion_info=True +) + +ax = sw.plot_drift_raster_map( + peaks=motion_info["peaks"], + peak_locations=motion_info["peak_locations"], + recording=recording_preproc, + cmap="Greys_r", + scatter_decimate=10, + depth_lim=(-10, 3000) +) + +# ## Retrieve templates from database + +# + +templates_info = sgen.fetch_templates_database_info() + +print(f"Number of templates in database: {len(templates_info)}") +print(f"Template database columns: {templates_info.columns}") +# - + +available_brain_areas = np.unique(templates_info.brain_area) +print(f"Available brain areas: {available_brain_areas}") + +# Let's perform a query: templates from visual brain regions and at the "top" of the probe + +target_area = ["VISa5", "VISa6a", "VISp5", "VISp6a", "VISrl6b"] +minimum_depth = 1500 +templates_selected_info = templates_info.query(f"brain_area in {target_area} and depth_along_probe > {minimum_depth}") +len(templates_selected_info) + +# We can now retrieve the selected templates as a `Templates` object: + +templates_selected = sgen.query_templates_from_database(templates_selected_info, verbose=True) +print(templates_selected) + +# While we selected templates from a target aread and at certain depths, we can see that the template amplitudes are quite large. This will make spike sorting easy... we can further manipulate the `Templates` by rescaling, relocating, or further selections with the `sgen.scale_template_to_range`, `sgen.relocate_templates`, and `sgen.select_templates` functions. +# +# In our case, let's rescale the amplitudes between 50 and 150 $\mu$V and relocate them towards the bottom half of the probe, where the activity looks interesting! + +# + +min_amplitude = 50 +max_amplitude = 150 +templates_scaled = sgen.scale_template_to_range( + templates=templates_selected, + min_amplitude=min_amplitude, + max_amplitude=max_amplitude +) + +min_displacement = 1000 +max_displacement = 3000 +templates_relocated = sgen.relocate_templates( + templates=templates_scaled, + min_displacement=min_displacement, + max_displacement=max_displacement +) +# - + +# Let's plot the selected templates: + +sparsity_plot = si.compute_sparsity(templates_relocated) +fig = plt.figure(figsize=(10, 10)) +w = sw.plot_unit_templates(templates_relocated, sparsity=sparsity_plot, ncols=4, figure=fig) +w.figure.subplots_adjust(wspace=0.5, hspace=0.7) + +# ## Constructing hybrid recordings +# +# We can construct now hybrid recordings with the selected templates. +# +# We will do this in two ways to show how important it is to account for drifts when injecting hybrid spikes. +# +# - For the first recording we will not pass the estimated motion (`recording_hybrid_ignore_drift`). +# - For the second recording, we will pass and account for the estimated motion (`recording_hybrid_with_drift`). + +recording_hybrid_ignore_drift, sorting_hybrid = sgen.generate_hybrid_recording( + recording=recording_preproc, templates=templates_relocated, seed=2308 +) +recording_hybrid_ignore_drift + +# Note that the `generate_hybrid_recording` is warning us that we might want to account for drift! + +# by passing the `sorting_hybrid` object, we make sure that injected spikes are the same +# this will take a bit more time because it's interpolating the templates to account for drifts +recording_hybrid_with_drift, sorting_hybrid = sgen.generate_hybrid_recording( + recording=recording_preproc, + templates=templates_relocated, + motion=motion_info["motion"], + sorting=sorting_hybrid, + seed=2308, +) +recording_hybrid_with_drift + +# We can use the `SortingAnalyzer` to estimate spike locations and plot them: + +# + +# construct analyzers and compute spike locations +analyzer_hybrid_ignore_drift = si.create_sorting_analyzer(sorting_hybrid, recording_hybrid_ignore_drift) +analyzer_hybrid_ignore_drift.compute(["random_spikes", "templates"]) +analyzer_hybrid_ignore_drift.compute("spike_locations", method="grid_convolution") + +analyzer_hybrid_with_drift = si.create_sorting_analyzer(sorting_hybrid, recording_hybrid_with_drift) +analyzer_hybrid_with_drift.compute(["random_spikes", "templates"]) +analyzer_hybrid_with_drift.compute("spike_locations", method="grid_convolution") +# - + +# Let's plot the added hybrid spikes using the drift maps: + +fig, axs = plt.subplots(ncols=2, figsize=(10, 7), sharex=True, sharey=True) +_ = sw.plot_drift_raster_map( + peaks=motion_info["peaks"], + peak_locations=motion_info["peak_locations"], + recording=recording_preproc, + cmap="Greys_r", + scatter_decimate=10, + ax=axs[0], +) +_ = sw.plot_drift_raster_map( + sorting_analyzer=analyzer_hybrid_ignore_drift, + color_amplitude=False, + color="r", + scatter_decimate=10, + ax=axs[0] +) +_ = sw.plot_drift_raster_map( + peaks=motion_info["peaks"], + peak_locations=motion_info["peak_locations"], + recording=recording_preproc, + cmap="Greys_r", + scatter_decimate=10, + ax=axs[1], +) +_ = sw.plot_drift_raster_map( + sorting_analyzer=analyzer_hybrid_with_drift, + color_amplitude=False, + color="b", + scatter_decimate=10, + ax=axs[1] +) +axs[0].set_title("Hybrid spikes\nIgnoring drift") +axs[1].set_title("Hybrid spikes\nAccounting for drift") +axs[0].set_xlim(1000, 1500) +axs[0].set_ylim(500, 2500) + +# We can see that clearly following drift is essential in order to properly blend the hybrid spikes into the recording! + +# ## Ground-truth study +# +# In this section we will use the hybrid recording to benchmark a few spike sorters: +# +# - `Kilosort2.5` +# - `Kilosort3` +# - `Kilosort4` +# - `Spyking-CIRCUS 2` + +# to speed up computations, let's first dump the recording to binary +recording_hybrid_bin = recording_hybrid_with_drift.save( + folder=workdir / "hybrid_bin", + overwrite=True +) + +# + +datasets = { + "hybrid": (recording_hybrid_bin, sorting_hybrid), +} + +cases = { + ("kilosort2.5", "hybrid"): { + "label": "KS2.5", + "dataset": "hybrid", + "run_sorter_params": { + "sorter_name": "kilosort2_5", + }, + }, + ("kilosort3", "hybrid"): { + "label": "KS3", + "dataset": "hybrid", + "run_sorter_params": { + "sorter_name": "kilosort3", + }, + }, + ("kilosort4", "hybrid"): { + "label": "KS4", + "dataset": "hybrid", + "run_sorter_params": {"sorter_name": "kilosort4", "nblocks": 5}, + }, + ("sc2", "hybrid"): { + "label": "spykingcircus2", + "dataset": "hybrid", + "run_sorter_params": { + "sorter_name": "spykingcircus2", + }, + }, +} + +# + +study_folder = workdir / "gt_study" + +gtstudy = sc.GroundTruthStudy(study_folder) + +# - + +# run the spike sorting jobs +gtstudy.run_sorters(verbose=False, keep=True) + +# run the comparisons +gtstudy.run_comparisons(exhaustive_gt=False) + +# ## Plot performances +# +# Given that we know the exactly where we injected the hybrid spikes, we can now compute and plot performance metrics: accuracy, precision, and recall. +# +# In the following plot, the x axis is the unit index, while the y axis is the performance metric. The units are sorted by performance. + +w_perf = sw.plot_study_performances(gtstudy, figsize=(12, 7)) +w_perf.axes[0, 0].legend(loc=4) + +# From the performance plots, we can see that there is no clear "winner", but `Kilosort3` definitely performs worse than the other options. +# +# Although non of the sorters find all units perfectly, `Kilosort2.5`, `Kilosort4`, and `SpyKING CIRCUS 2` all find around 10-12 hybrid units with accuracy greater than 80%. +# `Kilosort4` has a better overall curve, being able to find almost all units with an accuracy above 50%. `Kilosort2.5` performs well when looking at precision (finding all spikes in a hybrid unit), at the cost of lower recall (finding spikes when it shouldn't). +# +# +# In this example, we showed how to: +# +# - Access and fetch templates from the SpikeInterface template database +# - Manipulate templates (scaling/relocating) +# - Construct hybrid recordings accounting for drifts +# - Use the `GroundTruthStudy` to benchmark different sorters +# +# The hybrid framework can be extended to target multiple recordings from different brain regions and species and creating recordings of increasing complexity to challenge the existing sorters! +# +# In addition, hybrid studies can also be used to fine-tune spike sorting parameters on specific datasets. +# +# **Are you ready to try it on your data?** diff --git a/pyproject.toml b/pyproject.toml index 69f4067d13..644d52608e 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -139,6 +139,9 @@ test = [ # preprocessing "ibllib>=2.36.0", # for IBL + # streaming templates + "s3fs", + # tridesclous "numba", "hdbscan>=0.8.33", # Previous version had a broken wheel diff --git a/src/spikeinterface/core/core_tools.py b/src/spikeinterface/core/core_tools.py index 066ab58d8c..4a40d8e425 100644 --- a/src/spikeinterface/core/core_tools.py +++ b/src/spikeinterface/core/core_tools.py @@ -75,6 +75,7 @@ class SIJsonEncoder(json.JSONEncoder): def default(self, obj): from spikeinterface.core.base import BaseExtractor + from spikeinterface.sortingcomponents.motion_utils import Motion # Over-write behaviors for datetime object if isinstance(obj, datetime.datetime): @@ -98,6 +99,9 @@ def default(self, obj): if isinstance(obj, BaseExtractor): return obj.to_dict() + if isinstance(obj, Motion): + return obj.to_dict() + # The base-class handles the assertion return super().default(obj) diff --git a/src/spikeinterface/core/generate.py b/src/spikeinterface/core/generate.py index 9924a22403..af6664b886 100644 --- a/src/spikeinterface/core/generate.py +++ b/src/spikeinterface/core/generate.py @@ -3,7 +3,6 @@ import warnings import numpy as np from typing import Union, Optional, List, Literal -import warnings from math import ceil from .basesorting import SpikeVectorSortingSegment @@ -1858,7 +1857,7 @@ def get_traces( wf = template[start_template:end_template] if self.amplitude_vector is not None: wf = wf * self.amplitude_vector[i] - traces[start_traces:end_traces] += wf + traces[start_traces:end_traces] += wf.astype(traces.dtype, copy=False) return traces.astype(self.dtype, copy=False) diff --git a/src/spikeinterface/core/node_pipeline.py b/src/spikeinterface/core/node_pipeline.py index 0722ede23f..ceff8577d3 100644 --- a/src/spikeinterface/core/node_pipeline.py +++ b/src/spikeinterface/core/node_pipeline.py @@ -516,7 +516,6 @@ def _init_peak_pipeline(recording, nodes): worker_ctx["recording"] = recording worker_ctx["nodes"] = nodes worker_ctx["max_margin"] = max(node.get_trace_margin() for node in nodes) - return worker_ctx diff --git a/src/spikeinterface/core/sortinganalyzer.py b/src/spikeinterface/core/sortinganalyzer.py index d790308b76..fc20029ce6 100644 --- a/src/spikeinterface/core/sortinganalyzer.py +++ b/src/spikeinterface/core/sortinganalyzer.py @@ -970,7 +970,9 @@ def compute_one_extension(self, extension_name, save=True, verbose=False, **kwar extension_class = get_extension_class(extension_name) for child in _get_children_dependencies(extension_name): - self.delete_extension(child) + if self.has_extension(child): + print(f"Deleting {child}") + self.delete_extension(child) if extension_class.need_job_kwargs: params, job_kwargs = split_job_kwargs(kwargs) diff --git a/src/spikeinterface/core/template.py b/src/spikeinterface/core/template.py index 066d79b6b4..b64f0610ea 100644 --- a/src/spikeinterface/core/template.py +++ b/src/spikeinterface/core/template.py @@ -353,9 +353,9 @@ def from_zarr_group(cls, zarr_group: "zarr.Group") -> "Templates": the `add_templates_to_zarr_group` method. """ - templates_array = zarr_group["templates_array"] - channel_ids = zarr_group["channel_ids"] - unit_ids = zarr_group["unit_ids"] + templates_array = zarr_group["templates_array"][:] + channel_ids = zarr_group["channel_ids"][:] + unit_ids = zarr_group["unit_ids"][:] sampling_frequency = zarr_group.attrs["sampling_frequency"] nbefore = zarr_group.attrs["nbefore"] @@ -364,7 +364,7 @@ def from_zarr_group(cls, zarr_group: "zarr.Group") -> "Templates": sparsity_mask = None if "sparsity_mask" in zarr_group: - sparsity_mask = zarr_group["sparsity_mask"] + sparsity_mask = zarr_group["sparsity_mask"][:] probe = None if "probe" in zarr_group: @@ -449,7 +449,7 @@ def __eq__(self, other): return True - def get_channel_locations(self): + def get_channel_locations(self) -> np.ndarray: assert self.probe is not None, "Templates.get_channel_locations() needs a probe to be set" channel_locations = self.probe.contact_positions return channel_locations diff --git a/src/spikeinterface/core/template_tools.py b/src/spikeinterface/core/template_tools.py index 1ba9372322..934b18ed49 100644 --- a/src/spikeinterface/core/template_tools.py +++ b/src/spikeinterface/core/template_tools.py @@ -3,7 +3,6 @@ import warnings from .template import Templates -from .sparsity import _sparsity_doc from .sortinganalyzer import SortingAnalyzer @@ -50,7 +49,7 @@ def _get_nbefore(one_object): raise ValueError("SortingAnalyzer need extension 'templates' to be computed") return ext.nbefore else: - raise ValueError("Input should be Templates or SortingAnalyzer or SortingAnalyzer") + raise ValueError("Input should be Templates or SortingAnalyzer") def get_template_amplitudes( diff --git a/src/spikeinterface/generation/__init__.py b/src/spikeinterface/generation/__init__.py index eae6320e8d..7a2291d932 100644 --- a/src/spikeinterface/generation/__init__.py +++ b/src/spikeinterface/generation/__init__.py @@ -5,6 +5,14 @@ InjectDriftingTemplatesRecording, make_linear_displacement, ) + +from .hybrid_tools import ( + generate_hybrid_recording, + estimate_templates_from_recording, + select_templates, + scale_template_to_range, + relocate_templates, +) from .noise_tools import generate_noise from .drifting_generator import ( make_one_displacement_vector, diff --git a/src/spikeinterface/generation/drift_tools.py b/src/spikeinterface/generation/drift_tools.py index 99e4f4d36e..1f410f4330 100644 --- a/src/spikeinterface/generation/drift_tools.py +++ b/src/spikeinterface/generation/drift_tools.py @@ -1,10 +1,12 @@ from __future__ import annotations + +import math from typing import Optional import numpy as np from numpy.typing import ArrayLike -from spikeinterface.core import Templates, BaseRecording, BaseSorting, BaseRecordingSegment -import math +from probeinterface import Probe +from spikeinterface.core import BaseRecording, BaseRecordingSegment, BaseSorting, Templates def interpolate_templates(templates_array, source_locations, dest_locations, interpolation_method="cubic"): @@ -116,22 +118,80 @@ class DriftingTemplates(Templates): This is the same strategy used by MEArec. """ - def __init__(self, **kwargs): - Templates.__init__(self, **kwargs) + def __init__(self, templates_array_moved=None, displacements=None, **static_kwargs): + Templates.__init__(self, **static_kwargs) assert self.probe is not None, "DriftingTemplates need a Probe in the init" - - self.templates_array_moved = None - self.displacements = None + if templates_array_moved is not None: + if displacements is None: + raise ValueError( + "Please pass both template_array_moved and displacements to DriftingTemplates " + "if you are using precomputed displaced templates." + ) + self.templates_array_moved = templates_array_moved + self.displacements = displacements @classmethod - def from_static(cls, templates): - drifting_teplates = cls( + def from_static_templates(cls, templates: Templates): + """ + Construct a DriftingTemplates object given static templates. + The drifting templates can be then computed using the `precompute_displacements` method. + + Parameters + ---------- + templates : Templates + The static templates. + + Returns + ------- + drifting_templates : DriftingTemplates + The drifting templates object. + + """ + drifting_templates = cls( templates_array=templates.templates_array, sampling_frequency=templates.sampling_frequency, nbefore=templates.nbefore, probe=templates.probe, ) - return drifting_teplates + return drifting_templates + + @classmethod + def from_precomputed_templates( + cls, + templates_array_moved: ArrayLike, + displacements: ArrayLike, + sampling_frequency: float, + nbefore: int, + probe: Probe, + ): + """Construct a DriftingTemplates object given precomputed drifting templates + + Parameters + ---------- + templates_array_moved : np.array + Shape is (num_displacement, num_templates, num_samples, num_channels) + displacements : np.array + Shape is (num_displacement, 2). Last axis is xy, as in make_linear_displacement below. + sampling_frequency : float + nbefore : int + probe : probeinterface.Probe + + Returns + ------- + drifting_templates : DriftingTemplates + The drifting templates object. + """ + # take the central templates as representatives, just to make the super() + # constructor happy. they won't be used as drifting templates. + templates_static = templates_array_moved[templates_array_moved.shape[0] // 2] + return cls( + templates_array=templates_static, + sampling_frequency=sampling_frequency, + nbefore=nbefore, + probe=probe, + templates_array_moved=templates_array_moved, + displacements=displacements, + ) def move_one_template(self, unit_index, displacement, **interpolation_kwargs): """ @@ -442,7 +502,8 @@ def __init__( # TODO: self.upsample_vector = upsample_vector self.upsample_vector = None self.parent_recording = parent_recording_segment - self.num_samples = parent_recording_segment.get_num_frames() if num_samples is None else num_samples + self.num_samples = parent_recording_segment.get_num_samples() if num_samples is None else num_samples + self.num_samples = int(num_samples) self.displacement_indices = displacement_indices self.templates_array_moved = templates_array_moved @@ -507,7 +568,7 @@ def get_traces( wf = template[start_template:end_template] if self.amplitude_vector is not None: wf *= self.amplitude_vector[i] - traces[start_traces:end_traces] += wf + traces[start_traces:end_traces] += wf.astype(self.dtype, copy=False) return traces.astype(self.dtype) diff --git a/src/spikeinterface/generation/drifting_generator.py b/src/spikeinterface/generation/drifting_generator.py index 7f617c3ade..a0e8ece37e 100644 --- a/src/spikeinterface/generation/drifting_generator.py +++ b/src/spikeinterface/generation/drifting_generator.py @@ -25,12 +25,18 @@ # this should be moved in probeinterface but later _toy_probes = { + "Neuropixel-384": dict( + num_columns=4, + num_contact_per_column=[96] * 4, + xpitch=16, + ypitch=40, + y_shift_per_column=[20, 0, 20, 0], + contact_shapes="square", + contact_shape_params={"width": 12}, + ), "Neuropixel-128": dict( num_columns=4, - num_contact_per_column=[ - 32, - ] - * 4, + num_contact_per_column=[32] * 4, xpitch=16, ypitch=40, y_shift_per_column=[20, 0, 20, 0], @@ -66,22 +72,24 @@ def make_one_displacement_vector( Parameters ---------- - drift_mode: "zigzag" | "bumps", default: "zigzag" - The drift mode - duration: float, default: 600 + drift_mode : "zigzag" | "bumps", default: "zigzag" + The drift mode. + duration : float, default: 600 Duration in seconds - displacement_sampling_frequency: float, default: 5 - Sample rate of the vector - t_start_drift: float | None, default: None - Time in s when drift starts - t_end_drift: float | None, default: None - Time in s when drift ends - period_s: float, default: 200. + amplitude_factor : float, default: 1 + The amplitude factor of the drift. + displacement_sampling_frequency : float, default: 5 + Sample rate of the vector. + t_start_drift : float | None, default: None + Time in s when drift starts. + t_end_drift : float | None, default: None + Time in s when drift ends. + period_s : float, default: 200. Period of the zigzag in seconds - bump_interval_s: tuple, default: (30, 90.) - Range interval between random bumps in seconds - seed: None | int - The seed for the random bumps + bump_interval_s : tuple, default: (30, 90.) + Range interval between random bumps in seconds. + seed : None | int + The seed for the random bumps. Returns ------- @@ -170,34 +178,34 @@ def generate_displacement_vector( Parameters ---------- - duration: float + duration : float Duration of the displacement vector in seconds - unit_locations: np.array + unit_locations : np.array The unit location with shape (num_units, 3) - displacement_sampling_frequency: float, default: 5. + displacement_sampling_frequency : float, default: 5. The sampling frequency of the displacement vector - drift_start_um: list of float, default: [0, 20.] - The start boundary of the motion - drift_stop_um: list of float, default: [0, -20.] - The stop boundary of the motion - drift_step_um: float, default: 1 + drift_start_um : list of float, default: [0, 20.] + The start boundary of the motion in the x and y direction. + drift_stop_um : list of float, default: [0, -20.] + The stop boundary of the motion in the x and y direction. + drift_step_um : float, default: 1 Use to create the displacements_steps array. This ensures an odd number of steps - motion_list: list of dict + motion_list : list of dict List of dicts containing individual motion vector parameters. len(motion_list) == displacement_vectors.shape[2] Returns ------- - displacement_vectors: numpy.ndarray + displacement_vectors : numpy.ndarray The drift vector is a numpy array with shape (num_times, 2, num_motions) num_motions is generally 1, but can be > 1 in case of combining several drift vectors - displacement_unit_factor: numpy array | None, default: None + displacement_unit_factor : numpy array | None, default: None A array containing the factor per unit of each drift (num_units, num_motions). This is used to create non-rigid drift with a factor gradient of depending on the unit positions - displacement_sampling_frequency: float + displacement_sampling_frequency : float The sampling frequency of drift vector - displacements_steps: numpy array + displacements_steps : numpy array Position of the motion steps (from start to step) with shape (num_step, 2) """ @@ -295,38 +303,38 @@ def generate_drifting_recording( Parameters ---------- - num_units: int, default: 250 + num_units : int, default: 250 Number of units. - duration: float, default: 600. + duration : float, default: 600. The duration in seconds. - sampling_frequency: float, dfault: 30000. + sampling_frequency : float, dfault: 30000. The sampling frequency. - probe_name: str, default: "Neuropixel-128" + probe_name : str, default: "Neuropixel-128" The probe type if generate_probe_kwargs is None. - generate_probe_kwargs: None or dict + generate_probe_kwargs : None or dict A dict to generate the probe, this supersede probe_name when not None. - generate_unit_locations_kwargs: dict + generate_unit_locations_kwargs : dict Parameters given to generate_unit_locations(). - generate_displacement_vector_kwargs: dict + generate_displacement_vector_kwargs : dict Parameters given to generate_displacement_vector(). - generate_templates_kwargs: dict + generate_templates_kwargs : dict Parameters given to generate_templates() - generate_sorting_kwargs: dict + generate_sorting_kwargs : dict Parameters given to generate_sorting(). - generate_noise_kwargs: dict + generate_noise_kwargs : dict Parameters given to generate_noise(). - extra_outputs: bool, default False + extra_outputs : bool, default False Return optionaly a dict with more variables. - seed: None ot int + seed : None ot int A unique seed for all steps. Returns ------- - static_recording: Recording + static_recording : Recording A generated recording with no motion. - drifting_recording: Recording + drifting_recording : Recording A generated recording with motion. - sorting: Sorting + sorting : Sorting The ground trith soring object. Same for both recordings. extra_infos: @@ -407,7 +415,7 @@ def generate_drifting_recording( is_scaled=True, ) - drifting_templates = DriftingTemplates.from_static(templates) + drifting_templates = DriftingTemplates.from_static_templates(templates) sorting = generate_sorting( num_units=num_units, diff --git a/src/spikeinterface/generation/hybrid_tools.py b/src/spikeinterface/generation/hybrid_tools.py new file mode 100644 index 0000000000..a57e090f5f --- /dev/null +++ b/src/spikeinterface/generation/hybrid_tools.py @@ -0,0 +1,568 @@ +from __future__ import annotations + +import warnings +from typing import Literal +import numpy as np + +from spikeinterface.core import BaseRecording, BaseSorting, Templates + +from spikeinterface.core.generate import ( + generate_templates, + generate_unit_locations, + generate_sorting, + InjectTemplatesRecording, + _ensure_seed, +) +from spikeinterface.core.template_tools import get_template_extremum_channel + +from spikeinterface.sortingcomponents.motion_utils import Motion + +from spikeinterface.generation.drift_tools import ( + InjectDriftingTemplatesRecording, + DriftingTemplates, + make_linear_displacement, + interpolate_templates, + move_dense_templates, +) + + +def estimate_templates_from_recording( + recording: BaseRecording, + ms_before: float = 2, + ms_after: float = 2, + sorter_name: str = "spykingcircus2", + run_sorter_kwargs: dict | None = None, + job_kwargs: dict | None = None, +): + """ + Get dense templates from a recording. Internally, SpyKING CIRCUS 2 is used by default + with the only twist that the template matching step is not launched. Instead, a Template + object is returned based on the results of the clustering. Other sorters can be invoked + with the `sorter_name` and `run_sorter_kwargs` parameters. + + Parameters + ---------- + ms_before : float + The time before peaks of templates. + ms_after : float + The time after peaks of templates. + sorter_name : str + The sorter to be used in order to get some fast clustering. + run_sorter_kwargs : dict + The parameters to provide to the run_sorter function of spikeinterface. + job_kwargs : dict + The jobe keyword arguments to be used in the estimation of the templates. + + Returns + ------- + templates: Templates + The estimated templates + """ + from spikeinterface.core.waveform_tools import estimate_templates + from spikeinterface.sorters.runsorter import run_sorter + + if sorter_name == "spykingcircus2": + if "matching" not in run_sorter_kwargs: + run_sorter_kwargs["matching"] = {"method": None} + + run_sorter_kwargs = run_sorter_kwargs or {} + sorting = run_sorter(sorter_name, recording, **run_sorter_kwargs) + + spikes = sorting.to_spike_vector() + unit_ids = sorting.unit_ids + sampling_frequency = recording.get_sampling_frequency() + nbefore = int(ms_before * sampling_frequency / 1000.0) + nafter = int(ms_after * sampling_frequency / 1000.0) + + job_kwargs = job_kwargs or {} + templates_array = estimate_templates(recording, spikes, unit_ids, nbefore, nafter, **job_kwargs) + + sparsity_mask = None + channel_ids = recording.channel_ids + probe = recording.get_probe() + + templates = Templates( + templates_array, sampling_frequency, nbefore, True, sparsity_mask, channel_ids, unit_ids, probe=probe + ) + + return templates + + +def select_templates( + templates: Templates, + min_amplitude: float | None = None, + max_amplitude: float | None = None, + min_depth: float | None = None, + max_depth: float | None = None, + amplitude_function: Literal["ptp", "min", "max"] = "ptp", + depth_direction: Literal["x", "y"] = "y", +): + """ + Select templates from an existing Templates object based on amplitude and depth. + + Parameters + ---------- + templates : Templates + The input templates. + min_amplitude : float | None, default: None + The minimum amplitude of the templates. + max_amplitude : float | None, default: None + The maximum amplitude of the templates. + min_depth : float | None, default: None + The minimum depth of the templates. + max_depth : float | None, default: None + The maximum depth of the templates. + amplitude_function : "ptp" | "min" | "max", default: "ptp" + The function to use to compute the amplitude of the templates. Can be "ptp", "min" or "max". + depth_direction : "x" | "y", default: "y" + The direction in which to move the templates. Can be "x" or "y". + + Returns + ------- + Templates + The selected templates + """ + assert ( + min_amplitude is not None or max_amplitude is not None or min_depth is not None or max_depth is not None + ), "At least one of min_amplitude, max_amplitude, min_depth, max_depth should be provided" + # get template amplitudes and depth + extremum_channel_indices = list(get_template_extremum_channel(templates, outputs="index").values()) + extremum_channel_indices = np.array(extremum_channel_indices, dtype=int) + + mask = np.ones(templates.num_units, dtype=bool) + if min_amplitude is not None or max_amplitude is not None: + # filter amplitudes + if amplitude_function == "ptp": + amp_fun = np.ptp + elif amplitude_function == "min": + amp_fun = np.min + elif amplitude_function == "max": + amp_fun = np.max + amplitudes = np.zeros(templates.num_units) + templates_array = templates.templates_array + for i in range(templates.num_units): + amplitudes[i] = amp_fun(templates_array[i, :, extremum_channel_indices[i]]) + if min_amplitude is not None: + mask &= amplitudes >= min_amplitude + if max_amplitude is not None: + mask &= amplitudes <= max_amplitude + if min_depth is not None or max_depth is not None: + assert templates.probe is not None, "Templates should have a probe to filter based on depth" + depth_dimension = ["x", "y"].index(depth_direction) + channel_depths = templates.get_channel_locations()[:, depth_dimension] + unit_depths = channel_depths[extremum_channel_indices] + if min_depth is not None: + mask &= unit_depths >= min_depth + if max_depth is not None: + mask &= unit_depths <= max_depth + if np.sum(mask) == 0: + warnings.warn("No templates left after filtering") + return None + filtered_unit_ids = templates.unit_ids[mask] + filtered_templates = templates.select_units(filtered_unit_ids) + + return filtered_templates + + +def scale_template_to_range( + templates: Templates, + min_amplitude: float, + max_amplitude: float, + amplitude_function: Literal["ptp", "min", "max"] = "ptp", +): + """ + Scale templates to have a range with the provided minimum and maximum amplitudes. + + Parameters + ---------- + templates : Templates + The input templates. + min_amplitude : float + The minimum amplitude of the output templates after scaling. + max_amplitude : float + The maximum amplitude of the output templates after scaling. + + Returns + ------- + Templates + The scaled templates. + """ + extremum_channel_indices = list(get_template_extremum_channel(templates, outputs="index").values()) + extremum_channel_indices = np.array(extremum_channel_indices, dtype=int) + + # get amplitudes + if amplitude_function == "ptp": + amp_fun = np.ptp + elif amplitude_function == "min": + amp_fun = np.min + elif amplitude_function == "max": + amp_fun = np.max + amplitudes = np.zeros(templates.num_units) + templates_array = templates.templates_array + for i in range(templates.num_units): + amplitudes[i] = amp_fun(templates_array[i, :, extremum_channel_indices[i]]) + + # scale templates to meet min_amplitude and max_amplitude range + min_scale = np.min(amplitudes) / min_amplitude + max_scale = np.max(amplitudes) / max_amplitude + m = (max_scale - min_scale) / (np.max(amplitudes) - np.min(amplitudes)) + scales = m * (amplitudes - np.min(amplitudes)) + min_scale + + scaled_templates_array = templates.templates_array / scales[:, None, None] + + return Templates( + templates_array=scaled_templates_array, + sampling_frequency=templates.sampling_frequency, + nbefore=templates.nbefore, + sparsity_mask=templates.sparsity_mask, + channel_ids=templates.channel_ids, + unit_ids=templates.unit_ids, + probe=templates.probe, + ) + + +def relocate_templates( + templates: Templates, + min_displacement: float, + max_displacement: float, + margin: float = 0.0, + favor_borders: bool = True, + depth_direction: Literal["x", "y"] = "y", + seed: int | None = None, +): + """ + Relocates templates to have a minimum and maximum displacement. + + Parameters + ---------- + templates : Templates + The input templates + min_displacement : float + The minimum displacement of the templates + max_displacement : float + The maximum displacement of the templates + margin : float, default: 0.0 + The margin to keep between the templates and the borders of the probe. + If greater than 0, the templates are allowed to go beyond the borders of the probe. + favor_borders : bool, default: True + If True, the templates are always moved to the borders of the probe if this is + possoble based on the min_displacement and max_displacement constraints. + This avoids a bias in moving templates towards the center of the probe. + depth_direction : "x" | "y", default: "y" + The direction in which to move the templates. Can be "x" or "y" + seed : int or None, default: None + Seed for random initialization. + + + Returns + ------- + Templates + The relocated templates. + """ + seed = _ensure_seed(seed) + + extremum_channel_indices = list(get_template_extremum_channel(templates, outputs="index").values()) + extremum_channel_indices = np.array(extremum_channel_indices, dtype=int) + depth_dimension = ["x", "y"].index(depth_direction) + channel_depths = templates.get_channel_locations()[:, depth_dimension] + unit_depths = channel_depths[extremum_channel_indices] + + assert margin >= 0, "margin should be positive" + top_margin = np.max(channel_depths) + margin + bottom_margin = np.min(channel_depths) - margin + + templates_array_moved = np.zeros_like(templates.templates_array, dtype=templates.templates_array.dtype) + + rng = np.random.default_rng(seed) + displacements = rng.uniform(low=min_displacement, high=max_displacement, size=templates.num_units) + for i in range(templates.num_units): + # by default, displacement is positive + displacement = displacements[i] + unit_depth = unit_depths[i] + if not favor_borders: + displacement *= rng.choice([-1.0, 1.0]) + if unit_depth + displacement > top_margin: + displacement = -displacement + elif unit_depth - displacement < bottom_margin: + displacement = -displacement + else: + # check if depth is closer to top or bottom + if unit_depth > (top_margin - bottom_margin) / 2: + # if over top margin, move down + if unit_depth + displacement > top_margin: + displacement = -displacement + else: + # if within bottom margin, move down + if unit_depth - displacement >= bottom_margin: + displacement = -displacement + displacement_vector = np.zeros(2) + displacement_vector[depth_dimension] = displacement + templates_array_moved[i] = move_dense_templates( + templates.templates_array[i][None], + displacements=displacement_vector[None], + source_probe=templates.probe, + )[0] + + return Templates( + templates_array=templates_array_moved, + sampling_frequency=templates.sampling_frequency, + nbefore=templates.nbefore, + sparsity_mask=templates.sparsity_mask, + channel_ids=templates.channel_ids, + unit_ids=templates.unit_ids, + probe=templates.probe, + ) + + +def generate_hybrid_recording( + recording: BaseRecording, + sorting: BaseSorting | None = None, + templates: Templates | None = None, + motion: Motion | None = None, + are_templates_scaled: bool = True, + unit_locations: np.ndarray | None = None, + drift_step_um: float = 1.0, + upsample_factor: int | None = None, + upsample_vector: np.ndarray | None = None, + amplitude_std: float = 0.05, + generate_sorting_kwargs: dict = dict(num_units=10, firing_rates=15, refractory_period_ms=4.0, seed=2205), + generate_unit_locations_kwargs: dict = dict(margin_um=10.0, minimum_z=5.0, maximum_z=50.0, minimum_distance=20), + generate_templates_kwargs: dict = dict(ms_before=1.0, ms_after=3.0), + seed: int | None = None, +) -> tuple[BaseRecording, BaseSorting]: + """ + Generate an hybrid recording with spike given sorting+templates. + + The function starts from an existing recording and injects hybrid units in it. + The templates can be provided or generated. If the templates are not provided, + they are generated (using the `spikeinterface.core.generate.generate_templates()` function + and with arguments provided in `generate_templates_kwargs`). + The sorting can be provided or generated. If the sorting is not provided, it is generated + (using the `spikeinterface.core.generate.generate_sorting` function and with arguments + provided in `generate_sorting_kwargs`). + The injected spikes can optionally follow a motion pattern provided by a Motion object. + + Parameters + ---------- + recording : BaseRecording + The recording to inject units in. + sorting : Sorting | None, default: None + An external sorting object. If not provide, one is generated. + templates : Templates | None, default: None + The templates of units. + If None they are generated. + motion : Motion | None, default: None + The motion object to use for the drifting templates. + are_templates_scaled : bool, default: True + If True, the templates are assumed to be in uV, otherwise in the same unit as the recording. + In case the recording has scaling, the templates are "unscaled" before injection. + ms_before : float, default: 1.5 + Cut out in ms before spike peak. + ms_after : float, default: 3 + Cut out in ms after spike peak. + unit_locations : np.array, default: None + The locations at which the templates should be injected. If not provided, generated (see + generate_unit_location_kwargs). + drift_step_um : float, default: 1.0 + The step in um to use for the drifting templates. + upsample_factor : None or int, default: None + A upsampling factor used only when templates are not provided. + upsample_vector : np.array or None + Optional the upsample_vector can given. This has the same shape as spike_vector + amplitude_std : float, default: 0.05 + The standard deviation of the modulation to apply to the spikes when injecting them + into the recording. + generate_sorting_kwargs : dict + When sorting is not provide, this dict is used to generated a Sorting. + generate_unit_locations_kwargs : dict + Dict used to generated template when template not provided. + generate_templates_kwargs : dict + Dict used to generated template when template not provided. + seed : int or None + Seed for random initialization. + If None a diffrent Recording is generated at every call. + Note: even with None a generated recording keep internaly a seed to regenerate the same signal after dump/load. + + Returns + ------- + recording: BaseRecording + The generated hybrid recording extractor. + sorting: Sorting + The generated sorting extractor for the injected units. + """ + + # if None so the same seed will be used for all steps + seed = _ensure_seed(seed) + rng = np.random.default_rng(seed) + + sampling_frequency = recording.sampling_frequency + probe = recording.get_probe() + num_segments = recording.get_num_segments() + dtype = recording.dtype + durations = np.array([recording.get_duration(segment_index) for segment_index in range(num_segments)]) + channel_locations = probe.contact_positions + + assert ( + templates is not None or sorting is not None or generate_sorting_kwargs is not None + ), "Provide templates or sorting or generate_sorting_kwargs" + + # check num_units + num_units = None + if templates is not None: + assert isinstance(templates, Templates), "templates should be a Templates object" + num_units = templates.num_units + if sorting is not None: + assert isinstance(sorting, BaseSorting), "sorting should be a Sorting object" + if num_units is not None: + assert num_units == sorting.get_num_units(), "num_units should be the same in templates and sorting" + else: + num_units = sorting.get_num_units() + if num_units is None: + assert "num_units" in generate_sorting_kwargs, "num_units should be provided in generate_sorting_kwargs" + num_units = generate_sorting_kwargs["num_units"] + else: + generate_sorting_kwargs["num_units"] = num_units + + if templates is None: + if unit_locations is None: + unit_locations = generate_unit_locations(num_units, channel_locations, **generate_unit_locations_kwargs) + else: + assert len(unit_locations) == num_units, "unit_locations and num_units should have the same length" + templates_array = generate_templates( + channel_locations, + unit_locations, + sampling_frequency, + upsample_factor=upsample_factor, + seed=seed, + dtype=dtype, + **generate_templates_kwargs, + ) + ms_before = generate_templates_kwargs["ms_before"] + ms_after = generate_templates_kwargs["ms_after"] + nbefore = int(ms_before * sampling_frequency / 1000.0) + nafter = int(ms_after * sampling_frequency / 1000.0) + templates_ = Templates(templates_array, sampling_frequency, nbefore, True, None, None, None, probe) + else: + from spikeinterface.postprocessing.localization_tools import compute_monopolar_triangulation + + assert isinstance(templates, Templates), "templates should be a Templates object" + assert ( + templates.num_channels == recording.get_num_channels() + ), "templates and recording should have the same number of channels" + nbefore = templates.nbefore + nafter = templates.nafter + unit_locations = compute_monopolar_triangulation(templates) + + channel_locations_rel = channel_locations - channel_locations[0] + templates_locations = templates.get_channel_locations() + templates_locations_rel = templates_locations - templates_locations[0] + + if not np.allclose(channel_locations_rel, templates_locations_rel): + warnings.warn("Channel locations are different between recording and templates. Interpolating templates.") + templates_array = np.zeros(templates.templates_array.shape, dtype=dtype) + for i in range(len(templates_array)): + src_template = templates.templates_array[i][np.newaxis, :, :] + templates_array[i] = interpolate_templates(src_template, templates_locations_rel, channel_locations_rel) + else: + templates_array = templates.templates_array + + # manage scaling of templates + templates_ = templates + if recording.has_scaleable_traces(): + if are_templates_scaled: + templates_array = (templates_array - recording.get_channel_offsets()) / recording.get_channel_gains() + # make a copy of the templates and reset templates_array (might have scaled templates) + templates_ = templates.select_units(templates.unit_ids) + templates_.templates_array = templates_array + + if sorting is None: + generate_sorting_kwargs = generate_sorting_kwargs.copy() + generate_sorting_kwargs["durations"] = durations + generate_sorting_kwargs["sampling_frequency"] = sampling_frequency + generate_sorting_kwargs["seed"] = seed + sorting = generate_sorting(**generate_sorting_kwargs) + else: + assert sorting.sampling_frequency == sampling_frequency + + num_spikes = sorting.to_spike_vector().size + sorting.set_property("gt_unit_locations", unit_locations) + + assert (nbefore + nafter) == templates_array.shape[ + 1 + ], "templates and ms_before, ms_after should have the same length" + + if templates_array.ndim == 3: + upsample_vector = None + else: + if upsample_vector is None: + upsample_factor = templates_array.shape[3] + upsample_vector = rng.integers(0, upsample_factor, size=num_spikes) + + if amplitude_std is not None: + amplitude_factor = rng.normal(loc=1, scale=amplitude_std, size=num_spikes) + else: + amplitude_factor = None + + if motion is not None: + assert num_segments == motion.num_segments, "recording and motion should have the same number of segments" + dim = motion.dim + motion_array_concat = np.concatenate(motion.displacement) + if dim == 0: + start = np.array([np.min(motion_array_concat), 0]) + stop = np.array([np.max(motion_array_concat), 0]) + elif dim == 1: + start = np.array([0, np.min(motion_array_concat)]) + stop = np.array([0, np.max(motion_array_concat)]) + elif dim == 2: + raise NotImplementedError("3D motion not implemented yet") + num_step = int((stop - start)[dim] / drift_step_um) + displacements = make_linear_displacement(start, stop, num_step=num_step) + + # use templates_, because templates_array might have been scaled + drifting_templates = DriftingTemplates.from_static_templates(templates_) + drifting_templates.precompute_displacements(displacements) + + # calculate displacement vectors for each segment and unit + # for each unit, we interpolate the motion at its location + displacement_sampling_frequency = 1.0 / np.diff(motion.temporal_bins_s[0])[0] + displacement_vectors = [] + for segment_index in range(motion.num_segments): + temporal_bins_segment = motion.temporal_bins_s[segment_index] + displacement_vector = np.zeros((len(temporal_bins_segment), 2, num_units)) + for unit_index in range(num_units): + motion_for_unit = motion.get_displacement_at_time_and_depth( + times_s=temporal_bins_segment, + locations_um=unit_locations[unit_index], + segment_index=segment_index, + grid=True, + ) + displacement_vector[:, motion.dim, unit_index] = motion_for_unit[motion.dim, :] + displacement_vectors.append(displacement_vector) + # since displacement is estimated by interpolation for each unit, the unit factor is an eye + displacement_unit_factor = np.eye(num_units) + + hybrid_recording = InjectDriftingTemplatesRecording( + sorting=sorting, + parent_recording=recording, + drifting_templates=drifting_templates, + displacement_vectors=displacement_vectors, + displacement_sampling_frequency=displacement_sampling_frequency, + displacement_unit_factor=displacement_unit_factor, + num_samples=(np.array(durations) * sampling_frequency).astype("int64"), + amplitude_factor=amplitude_factor, + ) + + else: + warnings.warn( + "No Motion is provided! Please check that your recording is drift-free, otherwise the hybrid recording " + "will have stationary units over a drifting recording..." + ) + hybrid_recording = InjectTemplatesRecording( + sorting, + templates_array, + nbefore=nbefore, + parent_recording=recording, + upsample_vector=upsample_vector, + ) + + return hybrid_recording, sorting diff --git a/src/spikeinterface/generation/noise_tools.py b/src/spikeinterface/generation/noise_tools.py index 48555b3062..11f30e352f 100644 --- a/src/spikeinterface/generation/noise_tools.py +++ b/src/spikeinterface/generation/noise_tools.py @@ -10,25 +10,24 @@ def generate_noise( Parameters ---------- - probe: Probe + probe : Probe A probe object. - sampling_frequency: float + sampling_frequency : float Sampling frequency - durations: list of float + durations : list of float Durations - dtype: np.dtype + dtype : np.dtype Dtype - noise_levels: float | np.array | tuple + noise_levels : float | np.array | tuple If scalar same noises on all channels. If array then per channels noise level. If tuple, then this represent the range. - - seed: None | int + seed : None | int The seed for random generator. Returns ------- - noise: NoiseGeneratorRecording + noise : NoiseGeneratorRecording A lazy noise generator recording. """ diff --git a/src/spikeinterface/generation/tests/test_drift_tools.py b/src/spikeinterface/generation/tests/test_drift_tools.py index 8a4837100e..5647b33930 100644 --- a/src/spikeinterface/generation/tests/test_drift_tools.py +++ b/src/spikeinterface/generation/tests/test_drift_tools.py @@ -94,11 +94,12 @@ def test_move_dense_templates(): def test_DriftingTemplates(): static_templates = make_some_templates() - drifting_templates = DriftingTemplates.from_static(static_templates) + drifting_templates = DriftingTemplates.from_static_templates(static_templates) displacement = np.array([[5.0, 10.0]]) unit_index = 0 moved_template_array = drifting_templates.move_one_template(unit_index, displacement) + assert not np.array_equal(moved_template_array, static_templates.templates_array[unit_index]) num_move = 5 amplitude_motion_um = 20 @@ -112,6 +113,25 @@ def test_DriftingTemplates(): static_templates.num_channels, ) + # test from precomputed + drifting_templates_from_precomputed = DriftingTemplates.from_precomputed_templates( + templates_array_moved=drifting_templates.templates_array_moved, + displacements=drifting_templates.displacements, + sampling_frequency=drifting_templates.sampling_frequency, + probe=drifting_templates.probe, + nbefore=drifting_templates.nbefore, + ) + assert drifting_templates_from_precomputed.templates_array_moved.shape == ( + num_move, + static_templates.num_units, + static_templates.num_samples, + static_templates.num_channels, + ) + assert np.array_equal( + drifting_templates_from_precomputed.templates_array_moved, drifting_templates.templates_array_moved + ) + assert np.array_equal(drifting_templates_from_precomputed.displacements, drifting_templates.displacements) + def test_InjectDriftingTemplatesRecording(create_cache_folder): cache_folder = create_cache_folder @@ -119,7 +139,7 @@ def test_InjectDriftingTemplatesRecording(create_cache_folder): probe = templates.probe # drifting templates - drifting_templates = DriftingTemplates.from_static(templates) + drifting_templates = DriftingTemplates.from_static_templates(templates) channel_locations = probe.contact_positions num_units = templates.unit_ids.size diff --git a/src/spikeinterface/generation/tests/test_hybrid_tools.py b/src/spikeinterface/generation/tests/test_hybrid_tools.py new file mode 100644 index 0000000000..d31a0ec81d --- /dev/null +++ b/src/spikeinterface/generation/tests/test_hybrid_tools.py @@ -0,0 +1,83 @@ +import numpy as np + +from spikeinterface.core import Templates +from spikeinterface.core.generate import ( + generate_ground_truth_recording, + generate_sorting, + generate_templates, + generate_unit_locations, +) +from spikeinterface.preprocessing.motion import correct_motion, load_motion_info +from spikeinterface.generation.hybrid_tools import ( + estimate_templates_from_recording, + generate_hybrid_recording, +) + + +def test_generate_hybrid_no_motion(): + rec, _ = generate_ground_truth_recording(sampling_frequency=20000, seed=0) + hybrid, _ = generate_hybrid_recording(rec, seed=0) + assert rec.get_num_channels() == hybrid.get_num_channels() + assert rec.get_num_frames() == hybrid.get_num_frames() + assert rec.get_num_segments() == hybrid.get_num_segments() + assert np.array_equal(rec.get_channel_locations(), hybrid.get_channel_locations()) + + +def test_generate_hybrid_with_sorting(): + gt_sorting = generate_sorting(durations=[10], num_units=20, sampling_frequency=20000, seed=0) + rec, _ = generate_ground_truth_recording(durations=[10], sampling_frequency=20000, sorting=gt_sorting, seed=0) + hybrid, sorting_hybrid = generate_hybrid_recording(rec, sorting=gt_sorting) + assert rec.get_num_channels() == hybrid.get_num_channels() + assert rec.get_num_frames() == hybrid.get_num_frames() + assert rec.get_num_segments() == hybrid.get_num_segments() + assert np.array_equal(rec.get_channel_locations(), hybrid.get_channel_locations()) + assert sorting_hybrid.get_num_units() == len(hybrid.templates) + + +def test_generate_hybrid_motion(): + rec, _ = generate_ground_truth_recording(sampling_frequency=20000, durations=[10], seed=0) + _, motion_info = correct_motion(rec, output_motion_info=True) + motion = motion_info["motion"] + hybrid, sorting_hybrid = generate_hybrid_recording(rec, motion=motion, seed=0) + assert rec.get_num_channels() == hybrid.get_num_channels() + assert rec.get_num_frames() == hybrid.get_num_frames() + assert rec.get_num_segments() == hybrid.get_num_segments() + assert np.array_equal(rec.get_channel_locations(), hybrid.get_channel_locations()) + assert sorting_hybrid.get_num_units() == len(hybrid.drifting_templates.unit_ids) + + +def test_generate_hybrid_from_templates(): + num_units = 10 + ms_before = 2 + ms_after = 4 + rec, _ = generate_ground_truth_recording(sampling_frequency=20000, seed=0) + channel_locations = rec.get_channel_locations() + unit_locations = generate_unit_locations(num_units, channel_locations=channel_locations, seed=0) + templates_array = generate_templates( + channel_locations, unit_locations, rec.sampling_frequency, ms_before, ms_after, seed=0 + ) + nbefore = int(ms_before * rec.sampling_frequency / 1000) + templates = Templates(templates_array, rec.sampling_frequency, nbefore, True, None, None, None, rec.get_probe()) + hybrid, sorting_hybrid = generate_hybrid_recording(rec, templates=templates, seed=0) + assert np.array_equal(hybrid.templates, templates.templates_array) + assert rec.get_num_channels() == hybrid.get_num_channels() + assert rec.get_num_frames() == hybrid.get_num_frames() + assert rec.get_num_segments() == hybrid.get_num_segments() + assert np.array_equal(rec.get_channel_locations(), hybrid.get_channel_locations()) + assert sorting_hybrid.get_num_units() == num_units + + +def test_estimate_templates(create_cache_folder): + cache_folder = create_cache_folder + rec, _ = generate_ground_truth_recording(num_units=10, sampling_frequency=20000, seed=0) + templates = estimate_templates_from_recording( + rec, run_sorter_kwargs=dict(folder=cache_folder / "sc", remove_existing_folder=True) + ) + assert len(templates.templates_array) > 0 + + +if __name__ == "__main__": + test_generate_hybrid_no_motion() + test_generate_hybrid_motion() + test_estimate_templates() + test_generate_hybrid_with_sorting() diff --git a/src/spikeinterface/generation/tests/test_mock.py b/src/spikeinterface/generation/tests/test_mock.py deleted file mode 100644 index 37c6bde47e..0000000000 --- a/src/spikeinterface/generation/tests/test_mock.py +++ /dev/null @@ -1,3 +0,0 @@ -def test_mock(): - # TODO: Add test logic here - pass diff --git a/src/spikeinterface/postprocessing/__init__.py b/src/spikeinterface/postprocessing/__init__.py index ae071a55e0..34a0bfab9a 100644 --- a/src/spikeinterface/postprocessing/__init__.py +++ b/src/spikeinterface/postprocessing/__init__.py @@ -40,7 +40,6 @@ from .unit_locations import ( compute_unit_locations, ComputeUnitLocations, - compute_center_of_mass, ) from .amplitude_scalings import compute_amplitude_scalings, ComputeAmplitudeScalings diff --git a/src/spikeinterface/postprocessing/localization_tools.py b/src/spikeinterface/postprocessing/localization_tools.py new file mode 100644 index 0000000000..b7571a6f3e --- /dev/null +++ b/src/spikeinterface/postprocessing/localization_tools.py @@ -0,0 +1,623 @@ +from __future__ import annotations + +import warnings + +import numpy as np + +try: + import numba + + HAVE_NUMBA = True +except ImportError: + HAVE_NUMBA = False + + +from spikeinterface.core import compute_sparsity, SortingAnalyzer, Templates +from spikeinterface.core.template_tools import get_template_extremum_channel, _get_nbefore, get_dense_templates_array + + +def compute_monopolar_triangulation( + sorting_analyzer_or_templates: SortingAnalyzer | Templates, + optimizer: str = "least_square", + radius_um: float = 75, + max_distance_um: float = 1000, + return_alpha: bool = False, + enforce_decrease: bool = False, + feature: str = "ptp", +) -> np.ndarray: + """ + Localize unit with monopolar triangulation. + This method is from Julien Boussard, Erdem Varol and Charlie Windolf + https://www.biorxiv.org/content/10.1101/2021.11.05.467503v1 + + There are 2 implementations of the 2 optimizer variants: + * https://github.com/int-brain-lab/spikes_localization_registration/blob/main/localization_pipeline/localizer.py + * https://github.com/cwindolf/spike-psvae/blob/main/spike_psvae/localization.py + + Important note about axis: + * x/y are dimmension on the probe plane (dim0, dim1) + * y is the depth by convention + * z it the orthogonal axis to the probe plan (dim2) + + Code from Erdem, Julien and Charlie do not use the same convention!!! + + + Parameters + ---------- + sorting_analyzer_or_templates : SortingAnalyzer | Templates + A SortingAnalyzer or Templates object + method : "least_square" | "minimize_with_log_penality", default: "least_square" + The optimizer to use + radius_um : float, default: 75 + For channel sparsity + max_distance_um : float, default: 1000 + to make bounddary in x, y, z and also for alpha + return_alpha : bool, default: False + Return or not the alpha value + enforce_decrease : bool, default: False + Enforce spatial decreasingness for PTP vectors + feature : "ptp" | "energy" | "peak_voltage", default: "ptp" + The available features to consider for estimating the position via + monopolar triangulation are peak-to-peak amplitudes ("ptp", default), + energy ("energy", as L2 norm) or voltages at the center of the waveform + ("peak_voltage") + + Returns + ------- + unit_location: np.ndarray + 3d or 4d, x, y, z, alpha + alpha is the amplitude at source estimation + """ + assert optimizer in ("least_square", "minimize_with_log_penality") + + assert feature in ["ptp", "energy", "peak_voltage"], f"{feature} is not a valid feature" + unit_ids = sorting_analyzer_or_templates.unit_ids + + contact_locations = sorting_analyzer_or_templates.get_channel_locations() + + sparsity = compute_sparsity(sorting_analyzer_or_templates, method="radius", radius_um=radius_um) + templates = get_dense_templates_array( + sorting_analyzer_or_templates, return_scaled=get_return_scaled(sorting_analyzer_or_templates) + ) + nbefore = _get_nbefore(sorting_analyzer_or_templates) + + if enforce_decrease: + neighbours_mask = np.zeros((templates.shape[0], templates.shape[2]), dtype=bool) + for i, unit_id in enumerate(unit_ids): + chan_inds = sparsity.unit_id_to_channel_indices[unit_id] + neighbours_mask[i, chan_inds] = True + enforce_decrease_radial_parents = make_radial_order_parents(contact_locations, neighbours_mask) + best_channels = get_template_extremum_channel(sorting_analyzer_or_templates, outputs="index") + + unit_location = np.zeros((unit_ids.size, 4), dtype="float64") + for i, unit_id in enumerate(unit_ids): + chan_inds = sparsity.unit_id_to_channel_indices[unit_id] + local_contact_locations = contact_locations[chan_inds, :] + + # wf is (nsample, nchan) - chann is only nieghboor + wf = templates[i, :, :][:, chan_inds] + if feature == "ptp": + wf_data = wf.ptp(axis=0) + elif feature == "energy": + wf_data = np.linalg.norm(wf, axis=0) + elif feature == "peak_voltage": + wf_data = np.abs(wf[nbefore]) + + # if enforce_decrease: + # enforce_decrease_shells_data( + # wf_data, best_channels[unit_id], enforce_decrease_radial_parents, in_place=True + # ) + + unit_location[i] = solve_monopolar_triangulation(wf_data, local_contact_locations, max_distance_um, optimizer) + + if not return_alpha: + unit_location = unit_location[:, :3] + + return unit_location + + +def compute_center_of_mass( + sorting_analyzer_or_templates: SortingAnalyzer | Templates, + peak_sign: str = "neg", + radius_um: float = 75, + feature: str = "ptp", +) -> np.ndarray: + """ + Computes the center of mass (COM) of a unit based on the template amplitudes. + + Parameters + ---------- + sorting_analyzer_or_templates : SortingAnalyzer | Templates + A SortingAnalyzer or Templates object + peak_sign : "neg" | "pos" | "both", default: "neg" + Sign of the template to compute best channels + radius_um : float + Radius to consider in order to estimate the COM + feature : "ptp" | "mean" | "energy" | "peak_voltage", default: "ptp" + Feature to consider for computation + + Returns + ------- + unit_location: np.array + """ + unit_ids = sorting_analyzer_or_templates.unit_ids + + contact_locations = sorting_analyzer_or_templates.get_channel_locations() + + assert feature in ["ptp", "mean", "energy", "peak_voltage"], f"{feature} is not a valid feature" + + sparsity = compute_sparsity( + sorting_analyzer_or_templates, peak_sign=peak_sign, method="radius", radius_um=radius_um + ) + templates = get_dense_templates_array( + sorting_analyzer_or_templates, return_scaled=get_return_scaled(sorting_analyzer_or_templates) + ) + nbefore = _get_nbefore(sorting_analyzer_or_templates) + + unit_location = np.zeros((unit_ids.size, 2), dtype="float64") + for i, unit_id in enumerate(unit_ids): + chan_inds = sparsity.unit_id_to_channel_indices[unit_id] + local_contact_locations = contact_locations[chan_inds, :] + + wf = templates[i, :, :] + + if feature == "ptp": + wf_data = (wf[:, chan_inds]).ptp(axis=0) + elif feature == "mean": + wf_data = (wf[:, chan_inds]).mean(axis=0) + elif feature == "energy": + wf_data = np.linalg.norm(wf[:, chan_inds], axis=0) + elif feature == "peak_voltage": + wf_data = wf[nbefore, chan_inds] + + # center of mass + com = np.sum(wf_data[:, np.newaxis] * local_contact_locations, axis=0) / np.sum(wf_data) + unit_location[i, :] = com + + return unit_location + + +def compute_grid_convolution( + sorting_analyzer_or_templates: SortingAnalyzer | Templates, + peak_sign: str = "neg", + radius_um: float = 40.0, + upsampling_um: float = 5, + sigma_ms: float = 0.25, + margin_um: float = 50, + prototype: np.ndarray | None = None, + percentile: float = 5, + weight_method: dict = {}, +) -> np.ndarray: + """ + Estimate the positions of the templates from a large grid of fake templates + + Parameters + ---------- + sorting_analyzer_or_templates : SortingAnalyzer | Templates + A SortingAnalyzer or Templates object + peak_sign : "neg" | "pos" | "both", default: "neg" + Sign of the template to compute best channels + radius_um : float, default: 40.0 + Radius to consider for the fake templates + upsampling_um : float, default: 5 + Upsampling resolution for the grid of templates + sigma_ms : float, default: 0.25 + The temporal decay of the fake templates + margin_um : float, default: 50 + The margin for the grid of fake templates + prototype : np.array or None, default: None + Fake waveforms for the templates. If None, generated as Gaussian + percentile : float, default: 5 + The percentage in [0, 100] of the best scalar products kept to + estimate the position + weight_method : dict + Parameter that should be provided to the get_convolution_weights() function + in order to know how to estimate the positions. One argument is mode that could + be either gaussian_2d (KS like) or exponential_3d (default) + Returns + ------- + unit_location: np.array + """ + + contact_locations = sorting_analyzer_or_templates.get_channel_locations() + unit_ids = sorting_analyzer_or_templates.unit_ids + + templates = get_dense_templates_array( + sorting_analyzer_or_templates, return_scaled=get_return_scaled(sorting_analyzer_or_templates) + ) + nbefore = _get_nbefore(sorting_analyzer_or_templates) + nafter = templates.shape[1] - nbefore + + fs = sorting_analyzer_or_templates.sampling_frequency + percentile = 100 - percentile + assert 0 <= percentile <= 100, "Percentile should be in [0, 100]" + + time_axis = np.arange(-nbefore, nafter) * 1000 / fs + if prototype is None: + prototype = np.exp(-(time_axis**2) / (2 * (sigma_ms**2))) + if peak_sign == "neg": + prototype *= -1 + + prototype = prototype[:, np.newaxis] + + template_positions, weights, nearest_template_mask, z_factors = get_grid_convolution_templates_and_weights( + contact_locations, radius_um, upsampling_um, margin_um, weight_method + ) + + peak_channels = get_template_extremum_channel(sorting_analyzer_or_templates, peak_sign, outputs="index") + + weights_sparsity_mask = weights > 0 + + nb_weights = weights.shape[0] + unit_location = np.zeros((unit_ids.size, 3), dtype="float64") + + for i, unit_id in enumerate(unit_ids): + main_chan = peak_channels[unit_id] + wf = templates[i, :, :] + nearest_mask = nearest_template_mask[main_chan, :] + channel_mask = np.sum(weights_sparsity_mask[:, :, nearest_mask], axis=(0, 2)) > 0 + num_templates = np.sum(nearest_mask) + sub_w = weights[:, channel_mask, :][:, :, nearest_mask] + global_products = (wf[:, channel_mask] * prototype).sum(axis=0) + + dot_products = np.zeros((nb_weights, num_templates), dtype=np.float32) + for count in range(nb_weights): + dot_products[count] = np.dot(global_products, sub_w[count]) + + mask = dot_products < 0 + if percentile > 0: + dot_products[mask] = np.nan + ## We need to catch warnings because some line can have only NaN, and + ## if so the nanpercentile function throws a warning + with warnings.catch_warnings(): + warnings.filterwarnings("ignore") + thresholds = np.nanpercentile(dot_products, percentile) + thresholds = np.nan_to_num(thresholds) + dot_products[dot_products < thresholds] = 0 + dot_products[mask] = 0 + + nearest_templates = template_positions[nearest_mask] + for count in range(nb_weights): + unit_location[i, :2] += np.dot(dot_products[count], nearest_templates) + + scalar_products = dot_products.sum(1) + unit_location[i, 2] = np.dot(z_factors, scalar_products) + with np.errstate(divide="ignore", invalid="ignore"): + unit_location[i] /= scalar_products.sum() + unit_location = np.nan_to_num(unit_location) + + return unit_location + + +def get_return_scaled(sorting_analyzer_or_templates): + if isinstance(sorting_analyzer_or_templates, Templates): + return_scaled = sorting_analyzer_or_templates.is_scaled + else: + return_scaled = sorting_analyzer_or_templates.return_scaled + return return_scaled + + +def make_initial_guess_and_bounds(wf_data, local_contact_locations, max_distance_um, initial_z=20): + # constant for initial guess and bounds + ind_max = np.argmax(wf_data) + max_ptp = wf_data[ind_max] + max_alpha = max_ptp * max_distance_um + + # initial guess is the center of mass + com = np.sum(wf_data[:, np.newaxis] * local_contact_locations, axis=0) / np.sum(wf_data) + x0 = np.zeros(4, dtype="float32") + x0[:2] = com + x0[2] = initial_z + initial_alpha = np.sqrt(np.sum((com - local_contact_locations[ind_max, :]) ** 2) + initial_z**2) * max_ptp + x0[3] = initial_alpha + + # bounds depend on initial guess + bounds = ( + [x0[0] - max_distance_um, x0[1] - max_distance_um, 1, 0], + [x0[0] + max_distance_um, x0[1] + max_distance_um, max_distance_um * 10, max_alpha], + ) + + return x0, bounds + + +def solve_monopolar_triangulation(wf_data, local_contact_locations, max_distance_um, optimizer): + import scipy.optimize + + x0, bounds = make_initial_guess_and_bounds(wf_data, local_contact_locations, max_distance_um) + + if optimizer == "least_square": + args = (wf_data, local_contact_locations) + try: + output = scipy.optimize.least_squares(estimate_distance_error, x0=x0, bounds=bounds, args=args) + return tuple(output["x"]) + except Exception as e: + print(f"scipy.optimize.least_squares error: {e}") + return (np.nan, np.nan, np.nan, np.nan) + + if optimizer == "minimize_with_log_penality": + x0 = x0[:3] + bounds = [(bounds[0][0], bounds[1][0]), (bounds[0][1], bounds[1][1]), (bounds[0][2], bounds[1][2])] + max_data = wf_data.max() + args = (wf_data, local_contact_locations, max_data) + try: + output = scipy.optimize.minimize(estimate_distance_error_with_log, x0=x0, bounds=bounds, args=args) + # final alpha + q = data_at(*output["x"], 1.0, local_contact_locations) + alpha = (wf_data * q).sum() / np.square(q).sum() + return (*output["x"], alpha) + except Exception as e: + print(f"scipy.optimize.minimize error: {e}") + return (np.nan, np.nan, np.nan, np.nan) + + +# ---- +# optimizer "least_square" + + +def estimate_distance_error(vec, wf_data, local_contact_locations): + # vec dims ar (x, y, z amplitude_factor) + # given that for contact_location x=dim0 + z=dim1 and y is orthogonal to probe + dist = np.sqrt(((local_contact_locations - vec[np.newaxis, :2]) ** 2).sum(axis=1) + vec[2] ** 2) + data_estimated = vec[3] / dist + err = wf_data - data_estimated + return err + + +# ---- +# optimizer "minimize_with_log_penality" + + +def data_at(x, y, z, alpha, local_contact_locations): + return alpha / np.sqrt( + np.square(x - local_contact_locations[:, 0]) + np.square(y - local_contact_locations[:, 1]) + np.square(z) + ) + + +def estimate_distance_error_with_log(vec, wf_data, local_contact_locations, max_data): + x, y, z = vec + q = data_at(x, y, z, 1.0, local_contact_locations) + alpha = (q * wf_data / max_data).sum() / (q * q).sum() + err = ( + np.square(wf_data / max_data - data_at(x, y, z, alpha, local_contact_locations)).mean() + - np.log1p(10.0 * z) / 10000.0 + ) + return err + + +# --- +# waveform cleaning for localization. could be moved to another file + + +def make_shell(channel, geom, n_jumps=1): + """See make_shells""" + from scipy.spatial.distance import cdist + + pt = geom[channel] + dists = cdist([pt], geom).ravel() + radius = np.unique(dists)[1 : n_jumps + 1][-1] + return np.setdiff1d(np.flatnonzero(dists <= radius + 1e-8), [channel]) + + +def make_shells(geom, n_jumps=1): + """Get the neighbors of a channel within a radius + + That radius is found by figuring out the distance to the closest channel, + then the channel which is the next closest (but farther than the closest), + etc... for n_jumps. + + So, if n_jumps is 1, it will return the indices of channels which are + as close as the closest channel. If n_jumps is 2, it will include those + and also the indices of the next-closest channels. And so on... + + Returns + ------- + shell_neighbors : list + List of length geom.shape[0] (aka, the number of channels) + The ith entry in the list is an array with the indices of the neighbors + of the ith channel. + i is not included in these arrays (a channel is not in its own shell). + """ + return [make_shell(c, geom, n_jumps=n_jumps) for c in range(geom.shape[0])] + + +def make_radial_order_parents(geom, neighbours_mask, n_jumps_per_growth=1, n_jumps_parent=3): + """Pre-computes a helper data structure for enforce_decrease_shells""" + n_channels = len(geom) + + # which channels should we consider as possible parents for each channel? + shells = make_shells(geom, n_jumps=n_jumps_parent) + + radial_parents = [] + for channel, neighbors in enumerate(neighbours_mask): + channel_parents = [] + + # convert from boolean mask to list of indices + neighbors = np.flatnonzero(neighbors) + + # the closest shell will do nothing + already_seen = [channel] + shell0 = make_shell(channel, geom, n_jumps=n_jumps_per_growth) + already_seen += sorted(c for c in shell0 if c not in already_seen) + + # so we start at the second jump + jumps = 2 + while len(already_seen) < (neighbors < n_channels).sum(): + # grow our search -- what are the next-closest channels? + new_shell = make_shell(channel, geom, n_jumps=jumps * n_jumps_per_growth) + new_shell = list(sorted(c for c in new_shell if (c not in already_seen) and (c in neighbors))) + + # for each new channel, find the intersection of the channels + # from previous shells and that channel's shell in `shells` + for new_chan in new_shell: + parents = np.intersect1d(shells[new_chan], already_seen) + parents_rel = np.flatnonzero(np.isin(neighbors, parents)) + if not len(parents_rel): + # this can happen for some strange geometries. in that case, bail. + continue + channel_parents.append((np.flatnonzero(neighbors == new_chan).item(), parents_rel)) + + # add this shell to what we have seen + already_seen += new_shell + jumps += 1 + + radial_parents.append(channel_parents) + + return radial_parents + + +def enforce_decrease_shells_data(wf_data, maxchan, radial_parents, in_place=False): + """Radial enforce decrease""" + (C,) = wf_data.shape + + # allocate storage for decreasing version of data + decreasing_data = wf_data if in_place else wf_data.copy() + + # loop to enforce data decrease from parent shells + for c, parents_rel in radial_parents[maxchan]: + if decreasing_data[c] > decreasing_data[parents_rel].max(): + decreasing_data[c] *= decreasing_data[parents_rel].max() / decreasing_data[c] + + return decreasing_data + + +def get_grid_convolution_templates_and_weights( + contact_locations, radius_um=40, upsampling_um=5, margin_um=50, weight_method={"mode": "exponential_3d"} +): + """Get a upsampled grid of artificial templates given a particular probe layout + + Parameters + ---------- + contact_locations: array + The positions of the channels + radius_um: float + Radius in um for channel sparsity. + upsampling_um: float + Upsampling resolution for the grid of templates + margin_um: float + The margin for the grid of fake templates + weight_method: dict + Parameter that should be provided to the get_convolution_weights() function + in order to know how to estimate the positions. One argument is mode that could + be either gaussian_2d (KS like) or exponential_3d (default) + + Returns + ------- + template_positions: array + The positions of the upsampled templates + weights: + The weights of the templates, on a per channel basis + nearest_template_mask: array + A sparsity mask to to know which template is close to the contact locations, given + the radius_um parameter + z_factors: array + The z_factors that have been used to generate the weights along the third dimension + """ + + import sklearn.metrics + + x_min, x_max = contact_locations[:, 0].min(), contact_locations[:, 0].max() + y_min, y_max = contact_locations[:, 1].min(), contact_locations[:, 1].max() + + x_min -= margin_um + x_max += margin_um + y_min -= margin_um + y_max += margin_um + + eps = upsampling_um / 10 + + all_x, all_y = np.meshgrid( + np.arange(x_min, x_max + eps, upsampling_um), np.arange(y_min, y_max + eps, upsampling_um) + ) + + nb_templates = all_x.size + + template_positions = np.zeros((nb_templates, 2)) + template_positions[:, 0] = all_x.flatten() + template_positions[:, 1] = all_y.flatten() + + # mask to get nearest template given a channel + dist = sklearn.metrics.pairwise_distances(contact_locations, template_positions) + nearest_template_mask = dist <= radius_um + weights, z_factors = get_convolution_weights(dist, **weight_method) + + return template_positions, weights, nearest_template_mask, z_factors + + +def get_convolution_weights( + distances, + z_list_um=np.linspace(0, 120.0, 5), + sigma_list_um=np.linspace(5, 25, 5), + sparsity_threshold=None, + sigma_3d=2.5, + mode="exponential_3d", +): + """Get normalized weights for creating artificial templates, given some precomputed distances + + Parameters + ---------- + distances: 2D array + The distances between the source channels (real ones) and the upsampled one (virual ones) + sparsity_threshold: float, default None + The sparsity_threshold below which weights are set to 0 (speeding up computations). If None, + then a default value of 0.5/sqrt(distances.shape[0]) is set + mode: exponential_3d | gaussian_2d + The inference scheme to be used to get the convolution weights + Keyword arguments for the chosen method: + "gaussian_2d" (similar to KiloSort): + * sigma_list_um: array, default np.linspace(5, 25, 5) + The list of sigma to consider for decaying exponentials + "exponential_3d" (default): + * z_list_um: array, default np.linspace(0, 120.0, 5) + The list of z to consider for putative depth of the sources + * sigma_3d: float, default 2.5 + The scaling factor controling the decay of the exponential + + Returns + ------- + weights: + The weights of the templates, on a per channel basis + z_factors: array + The z_factors that have been used to generate the weights along the third dimension + """ + + if sparsity_threshold is not None: + assert 0 <= sparsity_threshold <= 1, "sparsity_threshold should be in [0, 1]" + + if mode == "exponential_3d": + weights = np.zeros((len(z_list_um), distances.shape[0], distances.shape[1]), dtype=np.float32) + for count, z in enumerate(z_list_um): + dist_3d = np.sqrt(distances**2 + z**2) + weights[count] = np.exp(-dist_3d / sigma_3d) + z_factors = z_list_um + elif mode == "gaussian_2d": + weights = np.zeros((len(sigma_list_um), distances.shape[0], distances.shape[1]), dtype=np.float32) + for count, sigma in enumerate(sigma_list_um): + alpha = 2 * (sigma**2) + weights[count] = np.exp(-(distances**2) / alpha) + z_factors = sigma_list_um + + # normalize to get normalized values in [0, 1] + with np.errstate(divide="ignore", invalid="ignore"): + norm = np.linalg.norm(weights, axis=1)[:, np.newaxis, :] + weights /= norm + + weights[~np.isfinite(weights)] = 0.0 + + # If sparsity is None or non zero, we are pruning weights that are below the + # sparsification factor. This will speed up furter computations + if sparsity_threshold is None: + sparsity_threshold = 0.5 / np.sqrt(distances.shape[0]) + weights[weights < sparsity_threshold] = 0 + + # re normalize to ensure we have unitary norms + with np.errstate(divide="ignore", invalid="ignore"): + norm = np.linalg.norm(weights, axis=1)[:, np.newaxis, :] + weights /= norm + + weights[~np.isfinite(weights)] = 0.0 + + return weights, z_factors + + +if HAVE_NUMBA: + enforce_decrease_shells = numba.jit(enforce_decrease_shells_data, nopython=True) diff --git a/src/spikeinterface/postprocessing/unit_locations.py b/src/spikeinterface/postprocessing/unit_locations.py index 16d9955e58..9435030775 100644 --- a/src/spikeinterface/postprocessing/unit_locations.py +++ b/src/spikeinterface/postprocessing/unit_locations.py @@ -1,21 +1,14 @@ from __future__ import annotations -import warnings - import numpy as np - - -try: - import numba - - HAVE_NUMBA = True -except ImportError: - HAVE_NUMBA = False +import warnings from ..core.sortinganalyzer import register_result_extension, AnalyzerExtension -from ..core import compute_sparsity -from ..core.template_tools import get_template_extremum_channel, _get_nbefore, get_dense_templates_array - +from .localization_tools import ( + compute_center_of_mass, + compute_grid_convolution, + compute_monopolar_triangulation, +) dtype_localize_by_method = { "center_of_mass": [("x", "float64"), ("y", "float64")], @@ -90,592 +83,3 @@ def get_data(self, outputs="numpy"): register_result_extension(ComputeUnitLocations) compute_unit_locations = ComputeUnitLocations.function_factory() - - -def make_initial_guess_and_bounds(wf_data, local_contact_locations, max_distance_um, initial_z=20): - # constant for initial guess and bounds - ind_max = np.argmax(wf_data) - max_ptp = wf_data[ind_max] - max_alpha = max_ptp * max_distance_um - - # initial guess is the center of mass - com = np.sum(wf_data[:, np.newaxis] * local_contact_locations, axis=0) / np.sum(wf_data) - x0 = np.zeros(4, dtype="float32") - x0[:2] = com - x0[2] = initial_z - initial_alpha = np.sqrt(np.sum((com - local_contact_locations[ind_max, :]) ** 2) + initial_z**2) * max_ptp - x0[3] = initial_alpha - - # bounds depend on initial guess - bounds = ( - [x0[0] - max_distance_um, x0[1] - max_distance_um, 1, 0], - [x0[0] + max_distance_um, x0[1] + max_distance_um, max_distance_um * 10, max_alpha], - ) - - return x0, bounds - - -def solve_monopolar_triangulation(wf_data, local_contact_locations, max_distance_um, optimizer): - import scipy.optimize - - x0, bounds = make_initial_guess_and_bounds(wf_data, local_contact_locations, max_distance_um) - - if optimizer == "least_square": - args = (wf_data, local_contact_locations) - try: - output = scipy.optimize.least_squares(estimate_distance_error, x0=x0, bounds=bounds, args=args) - return tuple(output["x"]) - except Exception as e: - print(f"scipy.optimize.least_squares error: {e}") - return (np.nan, np.nan, np.nan, np.nan) - - if optimizer == "minimize_with_log_penality": - x0 = x0[:3] - bounds = [(bounds[0][0], bounds[1][0]), (bounds[0][1], bounds[1][1]), (bounds[0][2], bounds[1][2])] - max_data = wf_data.max() - args = (wf_data, local_contact_locations, max_data) - try: - output = scipy.optimize.minimize(estimate_distance_error_with_log, x0=x0, bounds=bounds, args=args) - # final alpha - q = data_at(*output["x"], 1.0, local_contact_locations) - alpha = (wf_data * q).sum() / np.square(q).sum() - return (*output["x"], alpha) - except Exception as e: - print(f"scipy.optimize.minimize error: {e}") - return (np.nan, np.nan, np.nan, np.nan) - - -# ---- -# optimizer "least_square" - - -def estimate_distance_error(vec, wf_data, local_contact_locations): - # vec dims ar (x, y, z amplitude_factor) - # given that for contact_location x=dim0 + z=dim1 and y is orthogonal to probe - dist = np.sqrt(((local_contact_locations - vec[np.newaxis, :2]) ** 2).sum(axis=1) + vec[2] ** 2) - data_estimated = vec[3] / dist - err = wf_data - data_estimated - return err - - -# ---- -# optimizer "minimize_with_log_penality" - - -def data_at(x, y, z, alpha, local_contact_locations): - return alpha / np.sqrt( - np.square(x - local_contact_locations[:, 0]) + np.square(y - local_contact_locations[:, 1]) + np.square(z) - ) - - -def estimate_distance_error_with_log(vec, wf_data, local_contact_locations, max_data): - x, y, z = vec - q = data_at(x, y, z, 1.0, local_contact_locations) - alpha = (q * wf_data / max_data).sum() / (q * q).sum() - err = ( - np.square(wf_data / max_data - data_at(x, y, z, alpha, local_contact_locations)).mean() - - np.log1p(10.0 * z) / 10000.0 - ) - return err - - -def compute_monopolar_triangulation( - sorting_analyzer, - optimizer="minimize_with_log_penality", - radius_um=75, - max_distance_um=1000, - return_alpha=False, - enforce_decrease=False, - feature="ptp", -): - """ - Localize unit with monopolar triangulation. - This method is from Julien Boussard, Erdem Varol and Charlie Windolf - https://www.biorxiv.org/content/10.1101/2021.11.05.467503v1 - - There are 2 implementations of the 2 optimizer variants: - * https://github.com/int-brain-lab/spikes_localization_registration/blob/main/localization_pipeline/localizer.py - * https://github.com/cwindolf/spike-psvae/blob/main/spike_psvae/localization.py - - Important note about axis: - * x/y are dimmension on the probe plane (dim0, dim1) - * y is the depth by convention - * z it the orthogonal axis to the probe plan (dim2) - - Code from Erdem, Julien and Charlie do not use the same convention!!! - - - Parameters - ---------- - sorting_analyzer: SortingAnalyzer - A SortingAnalyzer object - method: "least_square" | "minimize_with_log_penality", default: "least_square" - The optimizer to use - radius_um: float, default: 75 - For channel sparsity - max_distance_um: float, default: 1000 - to make bounddary in x, y, z and also for alpha - return_alpha: bool, default: False - Return or not the alpha value - enforce_decrease : bool, default: False - Enforce spatial decreasingness for PTP vectors - feature: "ptp" | "energy" | "peak_voltage", default: "ptp" - The available features to consider for estimating the position via - monopolar triangulation are peak-to-peak amplitudes ("ptp", default), - energy ("energy", as L2 norm) or voltages at the center of the waveform - ("peak_voltage") - - Returns - ------- - unit_location: np.array - 3d or 4d, x, y, z, alpha - alpha is the amplitude at source estimation - """ - assert optimizer in ("least_square", "minimize_with_log_penality") - - assert feature in ["ptp", "energy", "peak_voltage"], f"{feature} is not a valid feature" - unit_ids = sorting_analyzer.unit_ids - - contact_locations = sorting_analyzer.get_channel_locations() - - sparsity = compute_sparsity(sorting_analyzer, method="radius", radius_um=radius_um) - templates = get_dense_templates_array(sorting_analyzer, return_scaled=sorting_analyzer.return_scaled) - nbefore = _get_nbefore(sorting_analyzer) - - if enforce_decrease: - neighbours_mask = np.zeros((templates.shape[0], templates.shape[2]), dtype=bool) - for i, unit_id in enumerate(unit_ids): - chan_inds = sparsity.unit_id_to_channel_indices[unit_id] - neighbours_mask[i, chan_inds] = True - enforce_decrease_radial_parents = make_radial_order_parents(contact_locations, neighbours_mask) - best_channels = get_template_extremum_channel(sorting_analyzer, outputs="index") - - unit_location = np.zeros((unit_ids.size, 4), dtype="float64") - for i, unit_id in enumerate(unit_ids): - chan_inds = sparsity.unit_id_to_channel_indices[unit_id] - local_contact_locations = contact_locations[chan_inds, :] - - # wf is (nsample, nchan) - chann is only nieghboor - wf = templates[i, :, :][:, chan_inds] - if feature == "ptp": - wf_data = wf.ptp(axis=0) - elif feature == "energy": - wf_data = np.linalg.norm(wf, axis=0) - elif feature == "peak_voltage": - wf_data = np.abs(wf[nbefore]) - - # if enforce_decrease: - # enforce_decrease_shells_data( - # wf_data, best_channels[unit_id], enforce_decrease_radial_parents, in_place=True - # ) - - unit_location[i] = solve_monopolar_triangulation(wf_data, local_contact_locations, max_distance_um, optimizer) - - if not return_alpha: - unit_location = unit_location[:, :3] - - return unit_location - - -def compute_center_of_mass(sorting_analyzer, peak_sign="neg", radius_um=75, feature="ptp"): - """ - Computes the center of mass (COM) of a unit based on the template amplitudes. - - Parameters - ---------- - sorting_analyzer: SortingAnalyzer - A SortingAnalyzer object - peak_sign: "neg" | "pos" | "both", default: "neg" - Sign of the template to compute best channels - radius_um: float - Radius to consider in order to estimate the COM - feature: "ptp" | "mean" | "energy" | "peak_voltage", default: "ptp" - Feature to consider for computation - - Returns - ------- - unit_location: np.array - """ - unit_ids = sorting_analyzer.unit_ids - - contact_locations = sorting_analyzer.get_channel_locations() - - assert feature in ["ptp", "mean", "energy", "peak_voltage"], f"{feature} is not a valid feature" - - sparsity = compute_sparsity(sorting_analyzer, peak_sign=peak_sign, method="radius", radius_um=radius_um) - templates = get_dense_templates_array(sorting_analyzer, return_scaled=sorting_analyzer.return_scaled) - nbefore = _get_nbefore(sorting_analyzer) - - unit_location = np.zeros((unit_ids.size, 2), dtype="float64") - for i, unit_id in enumerate(unit_ids): - chan_inds = sparsity.unit_id_to_channel_indices[unit_id] - local_contact_locations = contact_locations[chan_inds, :] - - wf = templates[i, :, :] - - if feature == "ptp": - wf_data = (wf[:, chan_inds]).ptp(axis=0) - elif feature == "mean": - wf_data = (wf[:, chan_inds]).mean(axis=0) - elif feature == "energy": - wf_data = np.linalg.norm(wf[:, chan_inds], axis=0) - elif feature == "peak_voltage": - wf_data = wf[nbefore, chan_inds] - - # center of mass - com = np.sum(wf_data[:, np.newaxis] * local_contact_locations, axis=0) / np.sum(wf_data) - unit_location[i, :] = com - - return unit_location - - -def compute_grid_convolution( - sorting_analyzer, - peak_sign="neg", - radius_um=40.0, - upsampling_um=5, - sigma_ms=0.25, - margin_um=50, - prototype=None, - percentile=5, - weight_method={}, -): - """ - Estimate the positions of the templates from a large grid of fake templates - - Parameters - ---------- - sorting_analyzer: SortingAnalyzer - A SortingAnalyzer object - peak_sign: "neg" | "pos" | "both", default: "neg" - Sign of the template to compute best channels - radius_um: float, default: 40.0 - Radius to consider for the fake templates - upsampling_um: float, default: 5 - Upsampling resolution for the grid of templates - sigma_ms: float, default: 0.25 - The temporal decay of the fake templates - margin_um: float, default: 50 - The margin for the grid of fake templates - prototype: np.array or None, default: None - Fake waveforms for the templates. If None, generated as Gaussian - percentile: float, default: 5 - The percentage in [0, 100] of the best scalar products kept to - estimate the position - weight_method: dict - Parameter that should be provided to the get_convolution_weights() function - in order to know how to estimate the positions. One argument is mode that could - be either gaussian_2d (KS like) or exponential_3d (default) - Returns - ------- - unit_location: np.array - """ - - contact_locations = sorting_analyzer.get_channel_locations() - unit_ids = sorting_analyzer.unit_ids - - templates = get_dense_templates_array(sorting_analyzer, return_scaled=sorting_analyzer.return_scaled) - nbefore = _get_nbefore(sorting_analyzer) - nafter = templates.shape[1] - nbefore - - fs = sorting_analyzer.sampling_frequency - percentile = 100 - percentile - assert 0 <= percentile <= 100, "Percentile should be in [0, 100]" - - time_axis = np.arange(-nbefore, nafter) * 1000 / fs - if prototype is None: - prototype = np.exp(-(time_axis**2) / (2 * (sigma_ms**2))) - if peak_sign == "neg": - prototype *= -1 - - prototype = prototype[:, np.newaxis] - - template_positions, weights, nearest_template_mask, z_factors = get_grid_convolution_templates_and_weights( - contact_locations, radius_um, upsampling_um, margin_um, weight_method - ) - - peak_channels = get_template_extremum_channel(sorting_analyzer, peak_sign, outputs="index") - - weights_sparsity_mask = weights > 0 - - nb_weights = weights.shape[0] - unit_location = np.zeros((unit_ids.size, 3), dtype="float64") - - for i, unit_id in enumerate(unit_ids): - main_chan = peak_channels[unit_id] - wf = templates[i, :, :] - nearest_mask = nearest_template_mask[main_chan, :] - channel_mask = np.sum(weights_sparsity_mask[:, :, nearest_mask], axis=(0, 2)) > 0 - num_templates = np.sum(nearest_mask) - sub_w = weights[:, channel_mask, :][:, :, nearest_mask] - global_products = (wf[:, channel_mask] * prototype).sum(axis=0) - - dot_products = np.zeros((nb_weights, num_templates), dtype=np.float32) - for count in range(nb_weights): - dot_products[count] = np.dot(global_products, sub_w[count]) - - mask = dot_products < 0 - if percentile > 0: - dot_products[mask] = np.nan - ## We need to catch warnings because some line can have only NaN, and - ## if so the nanpercentile function throws a warning - with warnings.catch_warnings(): - warnings.filterwarnings("ignore") - thresholds = np.nanpercentile(dot_products, percentile) - thresholds = np.nan_to_num(thresholds) - dot_products[dot_products < thresholds] = 0 - dot_products[mask] = 0 - - nearest_templates = template_positions[nearest_mask] - for count in range(nb_weights): - unit_location[i, :2] += np.dot(dot_products[count], nearest_templates) - - scalar_products = dot_products.sum(1) - unit_location[i, 2] = np.dot(z_factors, scalar_products) - with np.errstate(divide="ignore", invalid="ignore"): - unit_location[i] /= scalar_products.sum() - unit_location = np.nan_to_num(unit_location) - - return unit_location - - -# --- -# waveform cleaning for localization. could be moved to another file - - -def make_shell(channel, geom, n_jumps=1): - """See make_shells""" - from scipy.spatial.distance import cdist - - pt = geom[channel] - dists = cdist([pt], geom).ravel() - radius = np.unique(dists)[1 : n_jumps + 1][-1] - return np.setdiff1d(np.flatnonzero(dists <= radius + 1e-8), [channel]) - - -def make_shells(geom, n_jumps=1): - """Get the neighbors of a channel within a radius - - That radius is found by figuring out the distance to the closest channel, - then the channel which is the next closest (but farther than the closest), - etc... for n_jumps. - - So, if n_jumps is 1, it will return the indices of channels which are - as close as the closest channel. If n_jumps is 2, it will include those - and also the indices of the next-closest channels. And so on... - - Returns - ------- - shell_neighbors : list - List of length geom.shape[0] (aka, the number of channels) - The ith entry in the list is an array with the indices of the neighbors - of the ith channel. - i is not included in these arrays (a channel is not in its own shell). - """ - return [make_shell(c, geom, n_jumps=n_jumps) for c in range(geom.shape[0])] - - -def make_radial_order_parents(geom, neighbours_mask, n_jumps_per_growth=1, n_jumps_parent=3): - """Pre-computes a helper data structure for enforce_decrease_shells""" - n_channels = len(geom) - - # which channels should we consider as possible parents for each channel? - shells = make_shells(geom, n_jumps=n_jumps_parent) - - radial_parents = [] - for channel, neighbors in enumerate(neighbours_mask): - channel_parents = [] - - # convert from boolean mask to list of indices - neighbors = np.flatnonzero(neighbors) - - # the closest shell will do nothing - already_seen = [channel] - shell0 = make_shell(channel, geom, n_jumps=n_jumps_per_growth) - already_seen += sorted(c for c in shell0 if c not in already_seen) - - # so we start at the second jump - jumps = 2 - while len(already_seen) < (neighbors < n_channels).sum(): - # grow our search -- what are the next-closest channels? - new_shell = make_shell(channel, geom, n_jumps=jumps * n_jumps_per_growth) - new_shell = list(sorted(c for c in new_shell if (c not in already_seen) and (c in neighbors))) - - # for each new channel, find the intersection of the channels - # from previous shells and that channel's shell in `shells` - for new_chan in new_shell: - parents = np.intersect1d(shells[new_chan], already_seen) - parents_rel = np.flatnonzero(np.isin(neighbors, parents)) - if not len(parents_rel): - # this can happen for some strange geometries. in that case, bail. - continue - channel_parents.append((np.flatnonzero(neighbors == new_chan).item(), parents_rel)) - - # add this shell to what we have seen - already_seen += new_shell - jumps += 1 - - radial_parents.append(channel_parents) - - return radial_parents - - -def enforce_decrease_shells_data(wf_data, maxchan, radial_parents, in_place=False): - """Radial enforce decrease""" - (C,) = wf_data.shape - - # allocate storage for decreasing version of data - decreasing_data = wf_data if in_place else wf_data.copy() - - # loop to enforce data decrease from parent shells - for c, parents_rel in radial_parents[maxchan]: - if decreasing_data[c] > decreasing_data[parents_rel].max(): - decreasing_data[c] *= decreasing_data[parents_rel].max() / decreasing_data[c] - - return decreasing_data - - -def get_grid_convolution_templates_and_weights( - contact_locations, radius_um=40, upsampling_um=5, margin_um=50, weight_method={"mode": "exponential_3d"} -): - """Get a upsampled grid of artificial templates given a particular probe layout - - Parameters - ---------- - contact_locations: array - The positions of the channels - radius_um: float - Radius in um for channel sparsity. - upsampling_um: float - Upsampling resolution for the grid of templates - margin_um: float - The margin for the grid of fake templates - weight_method: dict - Parameter that should be provided to the get_convolution_weights() function - in order to know how to estimate the positions. One argument is mode that could - be either gaussian_2d (KS like) or exponential_3d (default) - - Returns - ------- - template_positions: array - The positions of the upsampled templates - weights: - The weights of the templates, on a per channel basis - nearest_template_mask: array - A sparsity mask to to know which template is close to the contact locations, given - the radius_um parameter - z_factors: array - The z_factors that have been used to generate the weights along the third dimension - """ - - import sklearn.metrics - - x_min, x_max = contact_locations[:, 0].min(), contact_locations[:, 0].max() - y_min, y_max = contact_locations[:, 1].min(), contact_locations[:, 1].max() - - x_min -= margin_um - x_max += margin_um - y_min -= margin_um - y_max += margin_um - - dx = np.abs(x_max - x_min) - dy = np.abs(y_max - y_min) - - eps = upsampling_um / 10 - - all_x, all_y = np.meshgrid( - np.arange(x_min, x_max + eps, upsampling_um), np.arange(y_min, y_max + eps, upsampling_um) - ) - - nb_templates = all_x.size - - template_positions = np.zeros((nb_templates, 2)) - template_positions[:, 0] = all_x.flatten() - template_positions[:, 1] = all_y.flatten() - - # mask to get nearest template given a channel - dist = sklearn.metrics.pairwise_distances(contact_locations, template_positions) - nearest_template_mask = dist <= radius_um - weights, z_factors = get_convolution_weights(dist, **weight_method) - - return template_positions, weights, nearest_template_mask, z_factors - - -def get_convolution_weights( - distances, - z_list_um=np.linspace(0, 120.0, 5), - sigma_list_um=np.linspace(5, 25, 5), - sparsity_threshold=None, - sigma_3d=2.5, - mode="exponential_3d", -): - """Get normalized weights for creating artificial templates, given some precomputed distances - - Parameters - ---------- - distances: 2D array - The distances between the source channels (real ones) and the upsampled one (virual ones) - sparsity_threshold: float, default None - The sparsity_threshold below which weights are set to 0 (speeding up computations). If None, - then a default value of 0.5/sqrt(distances.shape[0]) is set - mode: exponential_3d | gaussian_2d - The inference scheme to be used to get the convolution weights - Keyword arguments for the chosen method: - "gaussian_2d" (similar to KiloSort): - * sigma_list_um: array, default np.linspace(5, 25, 5) - The list of sigma to consider for decaying exponentials - "exponential_3d" (default): - * z_list_um: array, default np.linspace(0, 120.0, 5) - The list of z to consider for putative depth of the sources - * sigma_3d: float, default 2.5 - The scaling factor controling the decay of the exponential - - Returns - ------- - weights: - The weights of the templates, on a per channel basis - z_factors: array - The z_factors that have been used to generate the weights along the third dimension - """ - - if sparsity_threshold is not None: - assert 0 <= sparsity_threshold <= 1, "sparsity_threshold should be in [0, 1]" - - if mode == "exponential_3d": - weights = np.zeros((len(z_list_um), distances.shape[0], distances.shape[1]), dtype=np.float32) - for count, z in enumerate(z_list_um): - dist_3d = np.sqrt(distances**2 + z**2) - weights[count] = np.exp(-dist_3d / sigma_3d) - z_factors = z_list_um - elif mode == "gaussian_2d": - weights = np.zeros((len(sigma_list_um), distances.shape[0], distances.shape[1]), dtype=np.float32) - for count, sigma in enumerate(sigma_list_um): - alpha = 2 * (sigma**2) - weights[count] = np.exp(-(distances**2) / alpha) - z_factors = sigma_list_um - - # normalize to get normalized values in [0, 1] - with np.errstate(divide="ignore", invalid="ignore"): - norm = np.linalg.norm(weights, axis=1)[:, np.newaxis, :] - weights /= norm - - weights[~np.isfinite(weights)] = 0.0 - - # If sparsity is None or non zero, we are pruning weights that are below the - # sparsification factor. This will speed up furter computations - if sparsity_threshold is None: - sparsity_threshold = 0.5 / np.sqrt(distances.shape[0]) - weights[weights < sparsity_threshold] = 0 - - # re normalize to ensure we have unitary norms - with np.errstate(divide="ignore", invalid="ignore"): - norm = np.linalg.norm(weights, axis=1)[:, np.newaxis, :] - weights /= norm - - weights[~np.isfinite(weights)] = 0.0 - - return weights, z_factors - - -if HAVE_NUMBA: - enforce_decrease_shells = numba.jit(enforce_decrease_shells_data, nopython=True) diff --git a/src/spikeinterface/preprocessing/__init__.py b/src/spikeinterface/preprocessing/__init__.py index 38343f8804..5f9ac046e1 100644 --- a/src/spikeinterface/preprocessing/__init__.py +++ b/src/spikeinterface/preprocessing/__init__.py @@ -1,6 +1,6 @@ from .preprocessinglist import * -from .motion import correct_motion, load_motion_info +from .motion import correct_motion, load_motion_info, save_motion_info from .preprocessing_tools import get_spatial_interpolation_kernel from .detect_bad_channels import detect_bad_channels diff --git a/src/spikeinterface/preprocessing/motion.py b/src/spikeinterface/preprocessing/motion.py index ce6b9bb337..8c7bb1f489 100644 --- a/src/spikeinterface/preprocessing/motion.py +++ b/src/spikeinterface/preprocessing/motion.py @@ -2,6 +2,7 @@ import numpy as np import json +import shutil from pathlib import Path import time @@ -204,8 +205,8 @@ def correct_motion( recording, preset="nonrigid_accurate", folder=None, - overwrite=False, output_motion_info=False, + overwrite=False, detect_kwargs={}, select_kwargs={}, localize_peaks_kwargs={}, @@ -260,6 +261,8 @@ def correct_motion( If True, then the function returns a `motion_info` dictionary that contains variables to check intermediate steps (motion_histogram, non_rigid_windows, pairwise_displacement) This dictionary is the same when reloaded from the folder + overwrite : bool, default: False + If True and folder is given, overwrite the folder if it already exists detect_kwargs : dict Optional parameters to overwrite the ones in the preset for "detect" step. select_kwargs : dict @@ -317,22 +320,6 @@ def correct_motion( job_kwargs = fix_job_kwargs(job_kwargs) noise_levels = get_noise_levels(recording, return_scaled=False) - if folder is not None: - folder = Path(folder) - if overwrite: - if folder.is_dir(): - import shutil - - shutil.rmtree(folder) - else: - assert not folder.is_dir(), f"Folder {folder} already exists" - - folder.mkdir(exist_ok=True, parents=True) - - (folder / "parameters.json").write_text(json.dumps(parameters, indent=4, cls=SIJsonEncoder), encoding="utf8") - if recording.check_serializability("json"): - recording.dump_to_json(folder / "recording.json") - if not do_selection: # maybe do this directly in the folder when not None, but might be slow on external storage gather_mode = "memory" @@ -343,7 +330,7 @@ def correct_motion( node1 = ExtractDenseWaveforms(recording, parents=[node0], ms_before=0.1, ms_after=0.3) - # node nolcalize + # node detect + localize method = localize_peaks_kwargs.pop("method", "center_of_mass") method_class = localize_peak_methods[method] node2 = method_class(recording, parents=[node0, node1], return_output=True, **localize_peaks_kwargs) @@ -382,9 +369,6 @@ def correct_motion( select_peaks=t2 - t1, localize_peaks=t3 - t2, ) - if folder is not None: - np.save(folder / "peaks.npy", peaks) - np.save(folder / "peak_locations.npy", peak_locations) t0 = time.perf_counter() motion = estimate_motion(recording, peaks, peak_locations, **estimate_motion_kwargs) @@ -393,18 +377,17 @@ def correct_motion( recording_corrected = InterpolateMotionRecording(recording, motion, **interpolate_motion_kwargs) + motion_info = dict( + parameters=parameters, + run_times=run_times, + peaks=peaks, + peak_locations=peak_locations, + motion=motion, + ) if folder is not None: - (folder / "run_times.json").write_text(json.dumps(run_times, indent=4), encoding="utf8") - motion.save(folder / "motion") + save_motion_info(motion_info, folder, overwrite=overwrite) if output_motion_info: - motion_info = dict( - parameters=parameters, - run_times=run_times, - peaks=peaks, - peak_locations=peak_locations, - motion=motion, - ) return recording_corrected, motion_info else: return recording_corrected @@ -420,6 +403,25 @@ def correct_motion( correct_motion.__doc__ = correct_motion.__doc__.format(_doc_presets, _shared_job_kwargs_doc) +def save_motion_info(motion_info, folder, overwrite=False): + folder = Path(folder) + if folder.is_dir(): + if not overwrite: + raise FileExistsError(f"Folder {folder} already exists. Use `overwrite=True` to overwrite.") + else: + shutil.rmtree(folder) + folder.mkdir(exist_ok=True, parents=True) + + (folder / "parameters.json").write_text( + json.dumps(motion_info["parameters"], indent=4, cls=SIJsonEncoder), encoding="utf8" + ) + (folder / "run_times.json").write_text(json.dumps(motion_info["run_times"], indent=4), encoding="utf8") + + np.save(folder / "peaks.npy", motion_info["peaks"]) + np.save(folder / "peak_locations.npy", motion_info["peak_locations"]) + motion_info["motion"].save(folder / "motion") + + def load_motion_info(folder): from spikeinterface.sortingcomponents.motion_utils import Motion diff --git a/src/spikeinterface/preprocessing/tests/test_motion.py b/src/spikeinterface/preprocessing/tests/test_motion.py index a298b41d8f..baa7235263 100644 --- a/src/spikeinterface/preprocessing/tests/test_motion.py +++ b/src/spikeinterface/preprocessing/tests/test_motion.py @@ -1,10 +1,7 @@ import shutil -from pathlib import Path -import numpy as np -import pytest from spikeinterface.core import generate_recording -from spikeinterface.preprocessing import correct_motion, load_motion_info +from spikeinterface.preprocessing import correct_motion, load_motion_info, save_motion_info def test_estimate_and_correct_motion(create_cache_folder): @@ -19,9 +16,16 @@ def test_estimate_and_correct_motion(create_cache_folder): rec_corrected = correct_motion(rec, folder=folder) print(rec_corrected) + # test reloading motion info motion_info = load_motion_info(folder) print(motion_info.keys()) + # test saving motion info + save_folder = folder / "motion_info" + save_motion_info(motion_info=motion_info, folder=save_folder) + motion_info_loaded = load_motion_info(save_folder) + assert motion_info_loaded["motion"] == motion_info["motion"] + if __name__ == "__main__": # print(correct_motion.__doc__) diff --git a/src/spikeinterface/sorters/internal/spyking_circus2.py b/src/spikeinterface/sorters/internal/spyking_circus2.py index b5df0f1059..45cc93d0b6 100644 --- a/src/spikeinterface/sorters/internal/spyking_circus2.py +++ b/src/spikeinterface/sorters/internal/spyking_circus2.py @@ -278,29 +278,30 @@ def _run_from_folder(cls, sorter_output_folder, params, verbose): matching_params["templates"] = templates matching_job_params = job_kwargs.copy() - for value in ["chunk_size", "chunk_memory", "total_memory", "chunk_duration"]: - if value in matching_job_params: - matching_job_params[value] = None - matching_job_params["chunk_duration"] = "100ms" + if matching_method is not None: + for value in ["chunk_size", "chunk_memory", "total_memory", "chunk_duration"]: + if value in matching_job_params: + matching_job_params[value] = None + matching_job_params["chunk_duration"] = "100ms" + + spikes = find_spikes_from_templates( + recording_w, matching_method, method_kwargs=matching_params, **matching_job_params + ) - spikes = find_spikes_from_templates( - recording_w, matching_method, method_kwargs=matching_params, **matching_job_params - ) + if params["debug"]: + fitting_folder = sorter_output_folder / "fitting" + fitting_folder.mkdir(parents=True, exist_ok=True) + np.save(fitting_folder / "spikes", spikes) - if params["debug"]: - fitting_folder = sorter_output_folder / "fitting" - fitting_folder.mkdir(parents=True, exist_ok=True) - np.save(fitting_folder / "spikes", spikes) - - if verbose: - print("We found %d spikes" % len(spikes)) - - ## And this is it! We have a spyking circus - sorting = np.zeros(spikes.size, dtype=minimum_spike_dtype) - sorting["sample_index"] = spikes["sample_index"] - sorting["unit_index"] = spikes["cluster_index"] - sorting["segment_index"] = spikes["segment_index"] - sorting = NumpySorting(sorting, sampling_frequency, unit_ids) + if verbose: + print("We found %d spikes" % len(spikes)) + + ## And this is it! We have a spyking circus + sorting = np.zeros(spikes.size, dtype=minimum_spike_dtype) + sorting["sample_index"] = spikes["sample_index"] + sorting["unit_index"] = spikes["cluster_index"] + sorting["segment_index"] = spikes["segment_index"] + sorting = NumpySorting(sorting, sampling_frequency, unit_ids) sorting_folder = sorter_output_folder / "sorting" if sorting_folder.exists(): diff --git a/src/spikeinterface/sortingcomponents/benchmark/benchmark_peak_localization.py b/src/spikeinterface/sortingcomponents/benchmark/benchmark_peak_localization.py index 3eda5db3b6..05d142113b 100644 --- a/src/spikeinterface/sortingcomponents/benchmark/benchmark_peak_localization.py +++ b/src/spikeinterface/sortingcomponents/benchmark/benchmark_peak_localization.py @@ -1,6 +1,6 @@ from __future__ import annotations -from spikeinterface.postprocessing.unit_locations import ( +from spikeinterface.postprocessing.localization_tools import ( compute_center_of_mass, compute_monopolar_triangulation, compute_grid_convolution, diff --git a/src/spikeinterface/sortingcomponents/motion_utils.py b/src/spikeinterface/sortingcomponents/motion_utils.py index 26d4b35b1a..a8de3f6d13 100644 --- a/src/spikeinterface/sortingcomponents/motion_utils.py +++ b/src/spikeinterface/sortingcomponents/motion_utils.py @@ -90,11 +90,13 @@ def get_displacement_at_time_and_depth(self, times_s, locations_um, segment_inde Parameters ---------- times_s: np.array + The time points at which to evaluate the displacement. locations_um: np.array Either this is a one-dimensional array (a vector of positions along self.dimension), or else a 2d array with the 2 or 3 spatial dimensions indexed along axis=1. - segment_index: int, optional - grid : bool + segment_index: int, default: None + The index of the segment to evaluate. If None, and there is only one segment, then that segment is used. + grid : bool, default: False If grid=False, the default, then times_s and locations_um should have the same one-dimensional shape, and the returned displacement[i] is the displacement at time times_s[i] and location locations_um[i]. @@ -153,6 +155,7 @@ def to_dict(self): displacement=self.displacement, temporal_bins_s=self.temporal_bins_s, spatial_bins_um=self.spatial_bins_um, + direction=self.direction, interpolation_method=self.interpolation_method, ) @@ -223,8 +226,9 @@ def __eq__(self, other): def copy(self): return Motion( - self.displacement.copy(), - self.temporal_bins_s.copy(), - self.spatial_bins_um.copy(), + [d.copy() for d in self.displacement], + [t.copy() for t in self.temporal_bins_s], + [s.copy() for s in self.spatial_bins_um], + direction=self.direction, interpolation_method=self.interpolation_method, ) diff --git a/src/spikeinterface/sortingcomponents/peak_detection.py b/src/spikeinterface/sortingcomponents/peak_detection.py index b6f7709d27..0d5c92ff28 100644 --- a/src/spikeinterface/sortingcomponents/peak_detection.py +++ b/src/spikeinterface/sortingcomponents/peak_detection.py @@ -23,7 +23,7 @@ base_peak_dtype, ) -from spikeinterface.postprocessing.unit_locations import get_convolution_weights +from spikeinterface.postprocessing.localization_tools import get_convolution_weights from .tools import make_multi_method_doc diff --git a/src/spikeinterface/sortingcomponents/peak_localization.py b/src/spikeinterface/sortingcomponents/peak_localization.py index 23faea2d79..6d2ad09239 100644 --- a/src/spikeinterface/sortingcomponents/peak_localization.py +++ b/src/spikeinterface/sortingcomponents/peak_localization.py @@ -24,8 +24,11 @@ from ..postprocessing.unit_locations import ( dtype_localize_by_method, possible_localization_methods, - solve_monopolar_triangulation, +) + +from ..postprocessing.localization_tools import ( make_radial_order_parents, + solve_monopolar_triangulation, enforce_decrease_shells_data, get_grid_convolution_templates_and_weights, ) @@ -66,6 +69,8 @@ def get_localization_pipeline_nodes( elif method == "grid_convolution": if "prototype" not in method_kwargs: assert isinstance(peak_source, (PeakRetriever, SpikeRetriever)) + # extract prototypes silently + job_kwargs["progress_bar"] = False method_kwargs["prototype"] = get_prototype_spike( recording, peak_source.peaks, ms_before=ms_before, ms_after=ms_after, **job_kwargs ) diff --git a/src/spikeinterface/sortingcomponents/tools.py b/src/spikeinterface/sortingcomponents/tools.py index cc45dd3e40..8ee36cc9e5 100644 --- a/src/spikeinterface/sortingcomponents/tools.py +++ b/src/spikeinterface/sortingcomponents/tools.py @@ -62,6 +62,7 @@ def extract_waveform_at_max_channel(rec, peaks, ms_before=0.5, ms_after=1.5, **j return_scaled=False, sparsity_mask=sparsity_mask, copy=True, + verbose=False, **job_kwargs, ) diff --git a/src/spikeinterface/widgets/unit_waveforms.py b/src/spikeinterface/widgets/unit_waveforms.py index b046e55fbf..59f91306ea 100644 --- a/src/spikeinterface/widgets/unit_waveforms.py +++ b/src/spikeinterface/widgets/unit_waveforms.py @@ -540,9 +540,7 @@ def _update_plot(self, change): if self.sorting_analyzer is not None: templates = self.templates_ext.get_templates(unit_ids=unit_ids, operator="average") - templates_shadings = self._get_template_shadings( - unit_ids, self.next_data_plot["templates_percentile_shading"] - ) + templates_shadings = self._get_template_shadings(unit_ids, data_plot["templates_percentile_shading"]) channel_locations = self.sorting_analyzer.get_channel_locations() else: unit_indices = [list(self.templates.unit_ids).index(unit_id) for unit_id in unit_ids]