diff --git a/src/spikeinterface/sorters/internal/spyking_circus2.py b/src/spikeinterface/sorters/internal/spyking_circus2.py index 0c3b9f95d1..2c297662f4 100644 --- a/src/spikeinterface/sorters/internal/spyking_circus2.py +++ b/src/spikeinterface/sorters/internal/spyking_circus2.py @@ -114,7 +114,9 @@ def _run_from_folder(cls, sorter_output_folder, params, verbose): ## We get the labels for our peaks mask = peak_labels > -1 - sorting = NumpySorting.from_times_labels(selected_peaks["sample_index"][mask], peak_labels[mask], sampling_rate) + sorting = NumpySorting.from_times_labels( + selected_peaks["sample_index"][mask], peak_labels[mask].astype(int), sampling_rate + ) clustering_folder = sorter_output_folder / "clustering" if clustering_folder.exists(): shutil.rmtree(clustering_folder) diff --git a/src/spikeinterface/sortingcomponents/benchmark/benchmark_clustering.py b/src/spikeinterface/sortingcomponents/benchmark/benchmark_clustering.py index d68b8e5449..bd413417bf 100644 --- a/src/spikeinterface/sortingcomponents/benchmark/benchmark_clustering.py +++ b/src/spikeinterface/sortingcomponents/benchmark/benchmark_clustering.py @@ -524,7 +524,7 @@ def plot_statistics(self, metric="cosine", annotations=True, detect_threshold=5) template_real = template_real.reshape(template_real.size, 1).T if metric == "cosine": - dist = sklearn.metrics.pairwise.cosine_similarity(template, template_real, metric).flatten().tolist() + dist = sklearn.metrics.pairwise.cosine_similarity(template, template_real).flatten().tolist() else: dist = sklearn.metrics.pairwise_distances(template, template_real, metric).flatten().tolist() res += dist