forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_lib_tf2_test.py
276 lines (214 loc) · 9.56 KB
/
model_lib_tf2_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object detection model library."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import os
import tempfile
import unittest
import numpy as np
import six
import tensorflow.compat.v1 as tf
import tensorflow.compat.v2 as tf2
from object_detection import exporter_lib_v2
from object_detection import inputs
from object_detection import model_lib_v2
from object_detection.core import model
from object_detection.protos import train_pb2
from object_detection.utils import config_util
from object_detection.utils import tf_version
if six.PY2:
import mock # pylint: disable=g-importing-member,g-import-not-at-top
else:
from unittest import mock # pylint: disable=g-importing-member,g-import-not-at-top
# Model for test. Current options are:
# 'ssd_mobilenet_v2_pets_keras'
MODEL_NAME_FOR_TEST = 'ssd_mobilenet_v2_pets_keras'
def _get_data_path():
"""Returns an absolute path to TFRecord file."""
return os.path.join(tf.resource_loader.get_data_files_path(), 'test_data',
'pets_examples.record')
def get_pipeline_config_path(model_name):
"""Returns path to the local pipeline config file."""
return os.path.join(tf.resource_loader.get_data_files_path(), 'samples',
'configs', model_name + '.config')
def _get_labelmap_path():
"""Returns an absolute path to label map file."""
return os.path.join(tf.resource_loader.get_data_files_path(), 'data',
'pet_label_map.pbtxt')
def _get_config_kwarg_overrides():
"""Returns overrides to the configs that insert the correct local paths."""
data_path = _get_data_path()
label_map_path = _get_labelmap_path()
return {
'train_input_path': data_path,
'eval_input_path': data_path,
'label_map_path': label_map_path,
'train_input_reader': {'batch_size': 1}
}
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class ModelLibTest(tf.test.TestCase):
@classmethod
def setUpClass(cls): # pylint:disable=g-missing-super-call
tf.keras.backend.clear_session()
def test_train_loop_then_eval_loop(self):
"""Tests that Estimator and input function are constructed correctly."""
model_dir = tf.test.get_temp_dir()
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
new_pipeline_config_path = os.path.join(model_dir, 'new_pipeline.config')
config_util.clear_fine_tune_checkpoint(pipeline_config_path,
new_pipeline_config_path)
config_kwarg_overrides = _get_config_kwarg_overrides()
train_steps = 2
strategy = tf2.distribute.MirroredStrategy(['/cpu:0', '/cpu:1'])
with strategy.scope():
model_lib_v2.train_loop(
new_pipeline_config_path,
model_dir=model_dir,
train_steps=train_steps,
checkpoint_every_n=1,
num_steps_per_iteration=1,
**config_kwarg_overrides)
model_lib_v2.eval_continuously(
new_pipeline_config_path,
model_dir=model_dir,
checkpoint_dir=model_dir,
train_steps=train_steps,
wait_interval=1,
timeout=10,
**config_kwarg_overrides)
class SimpleModel(model.DetectionModel):
"""A model with a single weight vector."""
def __init__(self, num_classes=1):
super(SimpleModel, self).__init__(num_classes)
self.weight = tf.keras.backend.variable(np.ones(10), name='weight')
def postprocess(self, prediction_dict, true_image_shapes):
return {}
def updates(self):
return []
def restore_map(self, *args, **kwargs):
pass
def restore_from_objects(self, fine_tune_checkpoint_type):
return {'model': self}
def preprocess(self, _):
return tf.zeros((1, 128, 128, 3)), tf.constant([[128, 128, 3]])
def provide_groundtruth(self, *args, **kwargs):
pass
def predict(self, pred_inputs, true_image_shapes):
return {'prediction':
tf.abs(tf.reduce_sum(self.weight) * tf.reduce_sum(pred_inputs))}
def loss(self, prediction_dict, _):
return {'loss': tf.reduce_sum(prediction_dict['prediction'])}
def regularization_losses(self):
return []
def fake_model_builder(*_, **__):
return SimpleModel()
FAKE_BUILDER_MAP = {'detection_model_fn_base': fake_model_builder}
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class ModelCheckpointTest(tf.test.TestCase):
"""Test for model checkpoint related functionality."""
def test_checkpoint_max_to_keep(self):
"""Test that only the most recent checkpoints are kept."""
strategy = tf2.distribute.OneDeviceStrategy(device='/cpu:0')
with mock.patch.dict(
model_lib_v2.MODEL_BUILD_UTIL_MAP, FAKE_BUILDER_MAP):
model_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
new_pipeline_config_path = os.path.join(model_dir, 'new_pipeline.config')
config_util.clear_fine_tune_checkpoint(pipeline_config_path,
new_pipeline_config_path)
config_kwarg_overrides = _get_config_kwarg_overrides()
with strategy.scope():
model_lib_v2.train_loop(
new_pipeline_config_path, model_dir=model_dir,
train_steps=5, checkpoint_every_n=2, checkpoint_max_to_keep=3,
num_steps_per_iteration=1, **config_kwarg_overrides
)
ckpt_files = tf.io.gfile.glob(os.path.join(model_dir, 'ckpt-*.index'))
self.assertEqual(len(ckpt_files), 3,
'{} not of length 3.'.format(ckpt_files))
class IncompatibleModel(SimpleModel):
def restore_from_objects(self, *args, **kwargs):
return {'weight': self.weight}
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class CheckpointV2Test(tf.test.TestCase):
def setUp(self):
super(CheckpointV2Test, self).setUp()
self._model = SimpleModel()
tf.keras.backend.set_value(self._model.weight, np.ones(10) * 42)
ckpt = tf.train.Checkpoint(model=self._model)
self._test_dir = tf.test.get_temp_dir()
self._ckpt_path = ckpt.save(os.path.join(self._test_dir, 'ckpt'))
tf.keras.backend.set_value(self._model.weight, np.ones(10))
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=_get_config_kwarg_overrides())
self._train_input_fn = inputs.create_train_input_fn(
configs['train_config'],
configs['train_input_config'],
configs['model'])
def test_restore_v2(self):
"""Test that restoring a v2 style checkpoint works."""
model_lib_v2.load_fine_tune_checkpoint(
self._model, self._ckpt_path, checkpoint_type='',
checkpoint_version=train_pb2.CheckpointVersion.V2,
run_model_on_dummy_input=True,
input_dataset=self._train_input_fn(),
unpad_groundtruth_tensors=True)
np.testing.assert_allclose(self._model.weight.numpy(), 42)
def test_restore_map_incompatible_error(self):
"""Test that restoring an incompatible restore map causes an error."""
with self.assertRaisesRegex(TypeError,
r'.*received a \(str -> ResourceVariable\).*'):
model_lib_v2.load_fine_tune_checkpoint(
IncompatibleModel(), self._ckpt_path, checkpoint_type='',
checkpoint_version=train_pb2.CheckpointVersion.V2,
run_model_on_dummy_input=True,
input_dataset=self._train_input_fn(),
unpad_groundtruth_tensors=True)
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class MetricsExportTest(tf.test.TestCase):
@classmethod
def setUpClass(cls): # pylint:disable=g-missing-super-call
tf.keras.backend.clear_session()
def test_export_metrics_json_serializable(self):
"""Tests that Estimator and input function are constructed correctly."""
strategy = tf2.distribute.OneDeviceStrategy(device='/cpu:0')
def export(data, _):
json.dumps(data)
with mock.patch.dict(
exporter_lib_v2.INPUT_BUILDER_UTIL_MAP, FAKE_BUILDER_MAP):
with strategy.scope():
model_dir = tf.test.get_temp_dir()
new_pipeline_config_path = os.path.join(model_dir,
'new_pipeline.config')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
config_util.clear_fine_tune_checkpoint(pipeline_config_path,
new_pipeline_config_path)
train_steps = 2
with strategy.scope():
model_lib_v2.train_loop(
new_pipeline_config_path,
model_dir=model_dir,
train_steps=train_steps,
checkpoint_every_n=100,
performance_summary_exporter=export,
num_steps_per_iteration=1,
**_get_config_kwarg_overrides())
if __name__ == '__main__':
tf.test.main()