-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
151 lines (140 loc) · 5.62 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#impot libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pickle
import os
from sklearn.cluster import KMeans
from keras.datasets import mnist,cifar10,fashion_mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from operator import itemgetter
def loadFromPickle(path):
try:
dbfile = open(path, 'rb')
except:
return None, False
db = pickle.load(dbfile)
return db
def saveAsPickle(dataset, path):
dbfile = open(path, 'wb')
pickle.dump(dataset, dbfile)
print("Saved at: "+ path)
dbfile.close()
def checkClusters(args):
if "Clusters" not in os.listdir():
return False
path = args.datasetName+'.pickle'
if path not in os.listdir("Clusters"):
return False
return True
def getL2NormDistnce(v1,v2,norm=2):
"""
L norm between v1 and v2 vectors
ora is the order of L norm.
"""
distance = np.linalg.norm(v1-v2,ord=norm)
return distance
def getClusterDataPoints(listOfClusterCenters,dataX):
"""
After getting the final centres of the clusters, this function is called
For every point, this assigns it to its nearest centre.
return list of clusters
"""
uniqueClusterDataX = {}
for clusterCenter in listOfClusterCenters:
uniqueClusterDataX[tuple(clusterCenter)] = []
for dataPoint in dataX:
centerIntial = listOfClusterCenters[0]
minimumDistance = np.inf
for centerPoint in listOfClusterCenters:
distance = getL2NormDistnce(centerPoint,dataPoint)
if distance<minimumDistance:
minimumDistance = distance
centerIntial = centerPoint
uniqueClusterDataX[tuple(centerIntial)].append(dataPoint)
# print(len(uniqueClusterDataX))
llist=[]
for i in uniqueClusterDataX.keys():
if(len(uniqueClusterDataX[i])==0):
llist.append(i)
for i in llist:
del uniqueClusterDataX[i]
return uniqueClusterDataX
def getMnistData(mode=0):
"""
returns preprocessed MNIST dataset
"""
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 784).astype('float32') # reshape 60,000 28 x 28 matrices into 60,000 784-length vectors.
# X_test = X_test.reshape(10000, 784).astype('float32') # reshape 10,000 28 x 28 matrices into 10,000 784-length vectors.
X_test = np.array(X_test,dtype="float32")
X_train /= 255 # normalize each value for each pixel for the entire vector for each input
X_test /= 255
uniqueClasses = 10
Y_train = y_train
Y_test = np_utils.to_categorical(y_test, uniqueClasses)
if mode==1:
return X_train,Y_train,X_test,Y_test
return X_train, Y_train
def getCifar10Data(mode=0):
"""
returns preprocessed CIFAR10 dataset
"""
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
X_train = X_train.reshape(50000, 3072).astype('float32') # reshape 60,000 28 x 28 matrices into 60,000 784-length vectors.
# X_test = X_test.reshape(10000, 3072).astype('float32') # reshape 10,000 28 x 28 matrices into 10,000 784-length vectors.
X_test = np.array(X_test,dtype="float32")
X_train /= 255 # normalize each value for each pixel for the entire vector for each input
X_test /= 255
uniqueClasses = 10
Y_train = y_train.tolist()
Y_train = [i[0] for i in Y_train]
Y_test = np_utils.to_categorical(y_test, uniqueClasses)
if(mode==1):
return X_train,Y_train,X_test,Y_test
return X_train, Y_train
def getFMnistData(mode=0):
"""
returns preprocessed MNIST dataset
"""
(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()
X_train = X_train.reshape(60000, 784).astype('float32') # reshape 60,000 28 x 28 matrices into 60,000 784-length vectors.
# X_test = X_test.reshape(10000, 784).astype('float32') # reshape 10,000 28 x 28 matrices into 10,000 784-length vectors.
X_test = np.array(X_test,dtype="float32")
X_train /= 255 # normalize each value for each pixel for the entire vector for each input
X_test /= 255
uniqueClasses = 10
Y_train = y_train
Y_test = np_utils.to_categorical(y_test, uniqueClasses)
if mode==1:
return X_train,Y_train,X_test,Y_test
return X_train, Y_train
def hashedImages(X_train,Y_train):
imageList = {}
for i in range(len(X_train)):
imageList[X_train[i].tobytes()] = Y_train[i] # image label mapping
imagesAll = []
imagesAll.append(X_train) # images enqueue
return imageList, imagesAll
def labelsHomogenous(cImages,imageList):
checkForHomogenousLabels = [] # find if homogenous
for img in cImages:
checkForHomogenousLabels.append(imageList[img.tobytes()])
return checkForHomogenousLabels
def getInitCentroids(uniqueClasses,cImages,imageList):
classCentroids = [] # all centroids
uniqueCluster = {} # unique
for iLabel in range(uniqueClasses):
uniqueCluster[iLabel] = []
for i in cImages: # separate on basis of labels
uniqueCluster[imageList[i.tobytes()]].append(i)
for i in uniqueCluster.keys(): # find centroids of all classes
if uniqueCluster[i]:
meanVector = np.zeros(uniqueCluster[i][0].shape)
for j in uniqueCluster[i]:
meanVector+=j
classCentroids.append(meanVector/len(uniqueCluster[i]))
classCentroids = np.array(classCentroids)
return classCentroids