Skip to content

Latest commit

 

History

History
425 lines (317 loc) · 10.6 KB

configuration.md

File metadata and controls

425 lines (317 loc) · 10.6 KB

Configuration

Download Notebook

MindCV can parse the yaml file of the model through the argparse library and PyYAML library to configure parameters. Let's use squeezenet_1.0 model as an example to explain how to configure the corresponding parameters.

Basic Environment

  1. Parameter description

    • mode: Use graph mode (0) or pynative mode (1).

    • distribute: Whether to use distributed.

  2. Sample yaml file

    mode: 0
    distribute: True
    ...
  3. Parse parameter setting

    python train.py --mode 0 --distribute False ...
  4. Corresponding code example

    args.mode represents the parameter mode, args.distribute represents the parameter distribute.

    def train(args):
        ms.set_context(mode=args.mode)
    
        if args.distribute:
            init()
            device_num = get_group_size()
            rank_id = get_rank()
            ms.set_auto_parallel_context(device_num=device_num,
                                         parallel_mode='data_parallel',
                                         gradients_mean=True)
        else:
            device_num = None
            rank_id = None
        ...

Dataset

  1. Parameter description

    • dataset: dataset name.

    • data_dir: Path of dataset file.

    • shuffle: whether to shuffle the dataset.

    • dataset_download: whether to download the dataset.

    • batch_size: The number of rows in each batch.

    • drop_remainder: Determines whether to drop the last block whose data row number is less than the batch size.

    • num_parallel_workers: Number of workers(threads) to process the dataset in parallel.

  2. Sample yaml file

    dataset: 'imagenet'
    data_dir: './imagenet2012'
    shuffle: True
    dataset_download: False
    batch_size: 32
    drop_remainder: True
    num_parallel_workers: 8
    ...
  3. Parse parameter setting

    python train.py ... --dataset imagenet --data_dir ./imagenet2012 --shuffle True \
        --dataset_download False --batch_size 32 --drop_remainder True \
        --num_parallel_workers 8 ...
  4. Corresponding code example

    def train(args):
        ...
        dataset_train = create_dataset(
            name=args.dataset,
            root=args.data_dir,
            split='train',
            shuffle=args.shuffle,
            num_samples=args.num_samples,
            num_shards=device_num,
            shard_id=rank_id,
            num_parallel_workers=args.num_parallel_workers,
            download=args.dataset_download,
            num_aug_repeats=args.aug_repeats)
    
        ...
        target_transform = transforms.OneHot(num_classes) if args.loss == 'BCE' else None
    
        loader_train = create_loader(
            dataset=dataset_train,
            batch_size=args.batch_size,
            drop_remainder=args.drop_remainder,
            is_training=True,
            mixup=args.mixup,
            cutmix=args.cutmix,
            cutmix_prob=args.cutmix_prob,
            num_classes=args.num_classes,
            transform=transform_list,
            target_transform=target_transform,
            num_parallel_workers=args.num_parallel_workers,
        )
        ...

Data Augmentation

  1. Parameter description

    • image_resize: the image size after resizing for adapting to the network.

    • scale: random resize scale.

    • ratio: random resize aspect ratio.

    • hfilp: horizontal flip training aug probability.

    • interpolation: image interpolation mode for resize operator.

    • crop_pct: input image center crop percent.

    • color_jitter: color jitter factor.

    • re_prob: the probability of performing erasing.

  2. Sample yaml file

    image_resize: 224
    scale: [0.08, 1.0]
    ratio: [0.75, 1.333]
    hflip: 0.5
    interpolation: 'bilinear'
    crop_pct: 0.875
    color_jitter: [0.4, 0.4, 0.4]
    re_prob: 0.5
    ...
  3. Parse parameter setting

    python train.py ... --image_resize 224 --scale [0.08, 1.0] --ratio [0.75, 1.333] \
        --hflip 0.5 --interpolation "bilinear" --crop_pct 0.875 \
        --color_jitter [0.4, 0.4, 0.4] --re_prob 0.5 ...
  4. Corresponding code example

    def train(args):
        ...
        transform_list = create_transforms(
            dataset_name=args.dataset,
            is_training=True,
            image_resize=args.image_resize,
            scale=args.scale,
            ratio=args.ratio,
            hflip=args.hflip,
            vflip=args.vflip,
            color_jitter=args.color_jitter,
            interpolation=args.interpolation,
            auto_augment=args.auto_augment,
            mean=args.mean,
            std=args.std,
            re_prob=args.re_prob,
            re_scale=args.re_scale,
            re_ratio=args.re_ratio,
            re_value=args.re_value,
            re_max_attempts=args.re_max_attempts
        )
        ...

Model

  1. Parameter description

    • model: model name.

    • num_classes: number of label classes.

    • pretrained: whether load pretrained model.

    • ckpt_path: initialize model from this checkpoint.

    • keep_checkpoint_max: max number of checkpoint files.

    • ckpt_save_dir: the path of checkpoint.

    • epoch_size: train epoch size.

    • dataset_sink_mode: the dataset sink mode.

    • amp_level: auto mixed precision level for saving memory and acceleration.

  2. Sample yaml file

    model: 'squeezenet1_0'
    num_classes: 1000
    pretrained: False
    ckpt_path: './squeezenet1_0_gpu.ckpt'
    keep_checkpoint_max: 10
    ckpt_save_dir: './ckpt/'
    epoch_size: 200
    dataset_sink_mode: True
    amp_level: 'O0'
    ...
  3. Parse parameter setting

    python train.py ... --model squeezenet1_0 --num_classes 1000 --pretrained False \
        --ckpt_path ./squeezenet1_0_gpu.ckpt --keep_checkpoint_max 10 \
        --ckpt_save_path ./ckpt/ --epoch_size 200 --dataset_sink_mode True \
        --amp_level O0 ...
  4. Corresponding code example

    def train(args):
        ...
        network = create_model(model_name=args.model,
            num_classes=args.num_classes,
            in_channels=args.in_channels,
            drop_rate=args.drop_rate,
            drop_path_rate=args.drop_path_rate,
            pretrained=args.pretrained,
            checkpoint_path=args.ckpt_path,
            ema=args.ema
        )
        ...

Loss Function

  1. Parameter description

    • loss: name of loss function, BCE (BinaryCrossEntropy) or CE (CrossEntropy).

    • label_smoothing: use label smoothing.

  2. Sample yaml file

    loss: 'CE'
    label_smoothing: 0.1
    ...
  3. Parse parameter setting

    python train.py ... --loss CE --label_smoothing 0.1 ...
  4. Corresponding code example

    def train(args):
        ...
        loss = create_loss(name=args.loss,
            reduction=args.reduction,
            label_smoothing=args.label_smoothing,
            aux_factor=args.aux_factor
         )
        ...

Learning Rate Scheduler

  1. Parameter description

    • scheduler: name of scheduler.

    • min_lr: the minimum value of learning rate if the scheduler supports.

    • lr: learning rate.

    • warmup_epochs: warmup epochs.

    • decay_epochs: decay epochs.

  2. Sample yaml file

    scheduler: 'cosine_decay'
    min_lr: 0.0
    lr: 0.01
    warmup_epochs: 0
    decay_epochs: 200
    ...
  3. Parse parameter setting

    python train.py ... --scheduler cosine_decay --min_lr 0.0 --lr 0.01 \
        --warmup_epochs 0 --decay_epochs 200 ...
  4. Corresponding code example

    def train(args):
        ...
        lr_scheduler = create_scheduler(num_batches,
            scheduler=args.scheduler,
            lr=args.lr,
            min_lr=args.min_lr,
            warmup_epochs=args.warmup_epochs,
            warmup_factor=args.warmup_factor,
            decay_epochs=args.decay_epochs,
            decay_rate=args.decay_rate,
            milestones=args.multi_step_decay_milestones,
            num_epochs=args.epoch_size,
            lr_epoch_stair=args.lr_epoch_stair
        )
        ...

Optimizer

  1. Parameter description

    • opt: name of optimizer.

    • filter_bias_and_bn: filter Bias and BatchNorm.

    • momentum: Hyperparameter of type float, means momentum for the moving average.

    • weight_decay: weight decay (L2 penalty).

    • loss_scale: gradient scaling factor

    • use_nesterov: whether enables the Nesterov momentum

  2. Sample yaml file

    opt: 'momentum'
    filter_bias_and_bn: True
    momentum: 0.9
    weight_decay: 0.00007
    loss_scale: 1024
    use_nesterov: False
    ...
  3. Parse parameter setting

    python train.py ... --opt momentum --filter_bias_and_bn True --weight_decay 0.00007 \
        --loss_scale 1024 --use_nesterov False ...
  4. Corresponding code example

    def train(args):
        ...
        if args.ema:
            optimizer = create_optimizer(network.trainable_params(),
                opt=args.opt,
                lr=lr_scheduler,
                weight_decay=args.weight_decay,
                momentum=args.momentum,
                nesterov=args.use_nesterov,
                filter_bias_and_bn=args.filter_bias_and_bn,
                loss_scale=args.loss_scale,
                checkpoint_path=opt_ckpt_path,
                eps=args.eps
            )
        else:
            optimizer = create_optimizer(network.trainable_params(),
                opt=args.opt,
                lr=lr_scheduler,
                weight_decay=args.weight_decay,
                momentum=args.momentum,
                nesterov=args.use_nesterov,
                filter_bias_and_bn=args.filter_bias_and_bn,
                checkpoint_path=opt_ckpt_path,
                eps=args.eps
            )
        ...

Combination of Yaml and Parse

You can override the parameter settings in the yaml file by using parse to set parameters. Take the following shell command as an example,

python train.py -c ./configs/squeezenet/squeezenet_1.0_gpu.yaml --data_dir ./data

The above command overwrites the value of args.data_dir parameter from ./imagenet2012 in yaml file to ./data.