Skip to content

Latest commit

 

History

History
 
 

convnextv2

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

ConvNeXt V2

ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders

Introduction

In this paper, the authors propose a fully convolutional masked autoencoder framework and a new Global Response Normalization (GRN) layer that can be added to the ConvNeXt architecture to enhance inter-channel feature competition. This co-design of self-supervised learning techniques (such as MAE) and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation.[1]

Figure 1. Architecture of ConvNeXt V2 [1]

Results

Our reproduced model performance on ImageNet-1K is reported as follows.

Model Context Top-1 (%) Top-5 (%) Params (M) Recipe Download
convnextv2_tiny D910x8-G 82.43 95.98 28.64 yaml weights

Notes

  • Context: Training context denoted as {device}x{pieces}-{MS mode}, where mindspore mode can be G - graph mode or F - pynative mode with ms function. For example, D910x8-G is for training on 8 pieces of Ascend 910 NPU using graph mode.
  • Top-1 and Top-5: Accuracy reported on the validation set of ImageNet-1K.

Quick Start

Preparation

Installation

Please refer to the installation instruction in MindCV.

Dataset Preparation

Please download the ImageNet-1K dataset for model training and validation.

Training

  • Distributed Training

It is easy to reproduce the reported results with the pre-defined training recipe. For distributed training on multiple Ascend 910 devices, please run

# distributed training on multiple GPU/Ascend devices
mpirun -n 8 python train.py --config configs/convnextv2/convnextv2_tiny_ascend.yaml --data_dir /path/to/imagenet

If the script is executed by the root user, the --allow-run-as-root parameter must be added to mpirun.

Similarly, you can train the model on multiple GPU devices with the above mpirun command.

For detailed illustration of all hyper-parameters, please refer to config.py.

Note: As the global batch size (batch_size x num_devices) is an important hyper-parameter, it is recommended to keep the global batch size unchanged for reproduction or adjust the learning rate linearly to a new global batch size.

  • Standalone Training

If you want to train or finetune the model on a smaller dataset without distributed training, please run:

# standalone training on a CPU/GPU/Ascend device
python train.py --config configs/convnextv2/convnextv2_tiny_ascend.yaml --data_dir /path/to/dataset --distribute False

Validation

To validate the accuracy of the trained model, you can use validate.py and parse the checkpoint path with --ckpt_path.

python validate.py -c configs/convnextv2/convnextv2_tiny_ascend.yaml --data_dir /path/to/imagenet --ckpt_path /path/to/ckpt

Deployment

Please refer to the deployment tutorial in MindCV.

References

[1] Woo S, Debnath S, Hu R, et al. ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders[J]. arXiv preprint arXiv:2301.00808, 2023.