-
Notifications
You must be signed in to change notification settings - Fork 2
/
pongGPT_v11.py
230 lines (194 loc) · 7.48 KB
/
pongGPT_v11.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# 패키지 임포트
from collections import deque
from imutils.video import VideoStream
import numpy as np
import argparse
import cv2
import imutils
import time
import threading
import socket
import pyrealsense2 as rs
print("########### Pong GPT V5 ############")
# Realsense Booting up
pipeline = rs.pipeline()
config = rs.config()
# Get device product line for setting a supporting resolution
pipeline_wrapper = rs.pipeline_wrapper(pipeline)
pipeline_profile = config.resolve(pipeline_wrapper)
device = pipeline_profile.get_device()
device_product_line = str(device.get_info(rs.camera_info.product_line))
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
pipeline.start(config)
##### 중요 환경 변수들 #####
VIDEO_SELECTION = 1 # 0번부터 카메라 포트 찾아서 1씩 올려보기
VIDEO_WIDTH = 1000 # 화면 가로 넓이
WIDTH_CUT = 160
CENTER_LINE = 340 # 세로 센터 라인
NET_LINE = 640 # 네트 라인
CATCH_FRAME = 3
MIN_GAP = 10
ETA_FIX = 80
CENTER_BOUND = 150
# 초기화 변수들
line_on = False
FINAL_MOVE = 0 # 단위 cm
FINAL_ETA = 0 # 단위 ms
FINAL_ANGLE = 0 # 단위 tangent
# 주황색 탁구공 HSV 색 범위 지정 (창문쪽 형광등 두 개 키고 문쪽 형광등 한 개 껐을때 기준)
orangeLower = (1, 130, 240)
orangeUpper = (30, 255, 255)
# 파서 코딩 부분
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type=int, default=64, help="max buffer size")
args = vars(ap.parse_args())
# 데큐 생성
pts = deque(maxlen=args["buffer"])
pts2 = deque(maxlen=args["buffer"])
line_xy = deque(maxlen=2) # 단위 px
time_xy = deque(maxlen=2) # 단위 s
temp_move = deque() # 단위 px
temp_speed = deque() # 단위 px/ms
# Line Activater 쓰레드 함수
def line_activator(ETA):
global line_on
line_on = True
print("Line Activated / Detecting LOCK")
time.sleep(ETA)
line_on = False
print("Line Deactivated / Detecting UNLOCK")
line_xy.clear()
time_xy.clear()
temp_move.clear()
temp_speed.clear()
# 프레임 단위 무한 루프 영역
while True:
frames = pipeline.wait_for_frames()
depth_frame = frames.get_depth_frame()
color_frame = frames.get_color_frame()
if not(depth_frame and color_frame):
continue
depth_image = np.asanyarray(depth_frame.get_data())
frame = np.asanyarray(color_frame.get_data())
frame = frame[1] if args.get("video", False) else frame
if frame is None:
break
# 화면비 맞추기 (680x750)
frame = imutils.resize(frame, width=VIDEO_WIDTH)
depth_image = imutils.resize(depth_image, width=VIDEO_WIDTH)
frame = frame[0:750, WIDTH_CUT : 1000 - WIDTH_CUT]
depth_image = depth_image[0:750, WIDTH_CUT : 1000 - WIDTH_CUT]
# 영상처리
depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET)
blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, orangeLower, orangeUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
cv2.imshow("mask", mask)
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
center = None
realcenter = None
# 감지 했을 경우 (center 좌표 계산됨)
if len(cnts) > 0:
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# rgb 트레킹 레드라인 코드
pts.appendleft(center)
for i in range(1, len(pts)):
if pts[i - 1] is None or pts[i] is None:
continue
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
dist = depth_frame.get_distance(center[0], center[1])
print(dist)
# if (center[0] < CENTER_BOUND or center[0] > VIDEO_WIDTH - WIDTH_CUT - CENTER_BOUND): ## Near edge of the table. Additional value may subject to change.
# dist = depth_frame.get_distance(center[0] + 10, center[1])
# else: ## Near center of the table
# dist = depth_frame.get_distance(center[0] + 4, center[1])
# dist = round(dist, 2)
# dist *= 100
# realcenter = (center[0]* dist / 135, center[1] * dist / 135)
# 탁구 알고리즘
if line_on == False:
line_xy.append(center)
time_xy.append(time.time())
if len(line_xy) == 2:
if line_xy[0][1] + MIN_GAP < line_xy[1][1]:
temp_move.append(
int(
(1220 - line_xy[0][1])
* (line_xy[0][0] - line_xy[1][0])
/ (line_xy[0][1] - line_xy[1][1])
+ line_xy[0][0]
)
)
temp_speed.append(
int(
(line_xy[0][1] - line_xy[1][1])
/ ((time_xy[1] - time_xy[0]) * 1000)
)
)
if len(temp_move) == CATCH_FRAME:
temp_move.popleft()
temp_speed.popleft()
temp_move_sum = 0
for i in range(CATCH_FRAME - 1):
temp_move_sum += temp_move.popleft()
FINAL_MOVE = int(temp_move_sum / (CATCH_FRAME - 1) * (152.5 / 680))
temp_speed_sum = 0
for i in range(CATCH_FRAME - 1):
temp_speed_sum += temp_speed.popleft()
FINAL_ETA = (
int((1220 - line_xy[1][1]) / (temp_speed_sum / (CATCH_FRAME - 1)))
+ ETA_FIX
)
FINAL_ANGLE = (1220 - line_xy[1][1]) / (
line_xy[1][0] - FINAL_MOVE * (680 / 152.5)
)
print(
"FINAL MOVE : {0}cm / FINAL ETA : {1}ms / FINAL ANGLE : {2}".format(
FINAL_MOVE, FINAL_ETA, FINAL_ANGLE
)
)
# 감지 대기 쓰레드
lineact_tr = threading.Thread(
target=line_activator, args=(FINAL_ETA / 1000,), daemon=True
)
lineact_tr.start()
# depth 트레킹 레드라인 코드
pts2.appendleft(realcenter)
for i in range(1, len(pts2)):
if pts2[i - 1] is None or pts2[i] is None:
continue
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 255, 0), thickness)
# 화면 표시 선 코드
# 중앙선
cv2.line(frame, (CENTER_LINE, 0), (CENTER_LINE, NET_LINE), (255, 255, 255), 2)
# 네트선
cv2.line(frame, (0, NET_LINE), (VIDEO_WIDTH, NET_LINE), (255, 255, 255), 2)
images = np.hstack((frame, depth_colormap))
images = imutils.resize(images,width=500)
# 화면 띄우기
cv2.imshow("Pong GPT V5", images)
cv2.imshow("mask",mask)
# q : 종료 r : 리셋
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
break
elif key == ord("r"):
line_xy.clear()
time_xy.clear()
temp_move.clear()
temp_speed.clear()
line_on = False
FINAL_MOVE = None
FINAL_ETA = None
FINAL_ANGLE = None
cv2.destroyAllWindows()