-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpongGPT_test_rs.py
256 lines (217 loc) · 7.65 KB
/
pongGPT_test_rs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# 패키지 임포트
from collections import deque
from imutils.video import VideoStream
import numpy as np
import argparse
import cv2
import imutils
import time
import threading
import socket
import pyrealsense2 as rs
## Realsense Setup
pipeline = rs.pipeline()
config = rs.config()
# Get device product line for setting a supporting resolution
pipeline_wrapper = rs.pipeline_wrapper(pipeline)
pipeline_profile = config.resolve(pipeline_wrapper)
device = pipeline_profile.get_device()
device_product_line = str(device.get_info(rs.camera_info.product_line))
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
pipeline.start(config)
# Socket Communication
host = "127.0.0.1"
port = 10000
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server.bind((host, port))
server.listen()
print("Service Started.")
clients = []
def handle(client, fin_move, fin_eta):
try:
message = "{0},{1}".format(fin_move, fin_eta)
# 서버가 받은 메시지를 클라이언트 전체에 보내기
for client in clients:
client.send(message.encode(encoding="utf-8"))
except:
# 클라이언트가 나갔으면 알림
index = clients.index(client)
clients.remove(client)
client.close()
# 멀티 클라이언트를 받는 메서드
client, address = server.accept()
print("Connected with {}".format(str(address)))
clients.append(client)
##### 중요 환경 변수들 #####
VIDEO_SELECTION = 2 # 0번부터 카메라 포트 찾아서 1씩 올려보기
VIDEO_WIDTH = 640 # 화면 가로 넓이
WIDTH_CUT = 100
CENTER_LINE = 340 # 세로 센터 라인
NET_LINE = 640 # 네트 라인
CATCH_FRAME = 3
MIN_GAP = 10
ETA_FIX = 80
# 초기화 변수들
ball_in = False
line_on = False
RALLY_COUNT = 0
FINAL_MOVE = 0 # 단위 cm
FINAL_ETA = 0 # 단위 ms
# 주황색 탁구공 HSV 색 범위 지정 (창문쪽 형광등 두 개 키고 문쪽 형광등 한 개 껐을때 기준)
orangeLower = (1, 130, 240)
orangeUpper = (30, 255, 255)
# 파서 코딩 부분
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type=int, default=64, help="max buffer size")
args = vars(ap.parse_args())
# 덱 생성
pts = deque(maxlen=args["buffer"])
line_xy = deque(maxlen=2) # 단위 px
time_xy = deque(maxlen=2) # 단위 s
temp_move = deque() # 단위 px
temp_speed = deque() # 단위 px/ms
# Line Activater 쓰레드 함수
def line_activator(ETA):
global line_on
print("Line Activated / Detecting LOCK")
time.sleep(ETA)
line_on = False
print("Line Deactivated / Detecting UNLOCK")
line_xy.clear()
time_xy.clear()
temp_move.clear()
temp_speed.clear()
# 쓰레드 생성
# 비디오 스트리밍 시작
time.sleep(2.0)
# 프레임 단위 무한 루프 영역
while True:
frames = pipeline.wait_for_frames()
depth_frame = frames.get_depth_frame()
color_frame = frames.get_color_frame()
if not depth_frame or not color_frame:
continue
frame = np.asanyarray(color_frame.get_data())
frame = frame[1] if args.get("video", False) else frame
if frame is None:
break
# 화면비 (680x750)
# frame = imutils.resize(frame, width=VIDEO_WIDTH)
# frame = frame[0:750, WIDTH_CUT:VIDEO_WIDTH-WIDTH_CUT]
# 영상처리
blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, orangeLower, orangeUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
cv2.imshow("mask", mask)
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
center = None
# 감지 했을 경우 (center 좌표 계산됨)
if len(cnts) > 0:
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
dist = depth_frame.get_distance(center[0], center[1])
if dist > 0 and dist < 1 :
dist += 10
print("Depth: {0}".format(round(dist, 3)))
# 탁구 알고리즘
if line_on == False:
# print(center)
line_xy.append(center)
time_xy.append(time.time())
if len(line_xy) == 2:
if line_xy[0][1] + MIN_GAP < line_xy[1][1]:
temp_move.append(
int(
(1220 - line_xy[0][1])
* (line_xy[0][0] - line_xy[1][0])
/ (line_xy[0][1] - line_xy[1][1])
+ line_xy[0][0]
)
)
temp_speed.append(
int(
np.sqrt(
(line_xy[0][0] - line_xy[1][0]) ** 2
+ (line_xy[0][1] - line_xy[1][1]) ** 2
)
/ ((time_xy[1] - time_xy[0]) * 1000)
)
)
if len(temp_move) == CATCH_FRAME:
# 디버깅
print(temp_speed)
print(line_xy[1])
temp_move.popleft()
temp_speed.popleft()
temp_move_sum = 0
for i in range(CATCH_FRAME - 1):
temp_move_sum += temp_move.popleft()
FINAL_MOVE = int(temp_move_sum / (CATCH_FRAME - 1) * (152.5 / 680))
temp_speed_sum = 0
for i in range(CATCH_FRAME - 1):
temp_speed_sum += temp_speed.popleft()
FINAL_ETA = (
int(
np.sqrt(
(line_xy[1][0] - FINAL_MOVE * (680 / 152.5)) ** 2
+ (line_xy[1][1] - 1220) ** 2
)
/ (temp_speed_sum / (CATCH_FRAME - 1))
)
+ ETA_FIX
)
print(
"FINAL MOVE : {0}cm / FINAL ETA : {1}ms".format(FINAL_MOVE, FINAL_ETA)
)
line_on = True
thread = threading.Thread(
target=handle,
args=(
client,
FINAL_MOVE,
FINAL_ETA,
),
)
thread.start()
newline_act = threading.Thread(
target=line_activator, args=(FINAL_ETA / 1000,), daemon=True
)
newline_act.start()
# 트레킹 레드라인 코드
pts.appendleft(center)
for i in range(1, len(pts)):
if pts[i - 1] is None or pts[i] is None:
continue
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
# 화면 표시 선 코드
# 중앙선
cv2.line(frame, (CENTER_LINE, 0), (CENTER_LINE, NET_LINE), (255, 255, 255), 2)
# 네트선
cv2.line(frame, (0, NET_LINE), (VIDEO_WIDTH, NET_LINE), (255, 255, 255), 2)
# show the frame to our screen
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
elif key == ord("r"):
line_xy.clear()
time_xy.clear()
temp_move.clear()
temp_speed.clear()
line_on = False
FINAL_MOVE = None
FINAL_ETA = None
pipeline.stop()
# if we are not using a video file, stop the camera video stream
# close all windows
cv2.destroyAllWindows()