-
Notifications
You must be signed in to change notification settings - Fork 2
/
0817_depth_recog_from_alignment.py
297 lines (249 loc) · 9.84 KB
/
0817_depth_recog_from_alignment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# 패키지 임포트
from collections import deque
from imutils.video import VideoStream
import numpy as np
import argparse
import cv2
import imutils
import time
import threading
import socket
import pyrealsense2 as rs
print("########### Pong GPT V5 ############")
# Realsense Booting up
pipeline = rs.pipeline()
config = rs.config()
# Get device product line for setting a supporting resolution
pipeline_wrapper = rs.pipeline_wrapper(pipeline)
pipeline_profile = config.resolve(pipeline_wrapper)
device = pipeline_profile.get_device()
device_product_line = str(device.get_info(rs.camera_info.product_line))
found_rgb = False
for s in device.sensors:
if s.get_info(rs.camera_info.name) == 'RGB Camera':
found_rgb = True
break
if not found_rgb:
print("The demo requires Depth camera with Color sensor")
exit(0)
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
if device_product_line == 'L500':
config.enable_stream(rs.stream.color, 960, 540, rs.format.bgr8, 30)
else:
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
##### 중요 환경 변수들 #####
VIDEO_SELECTION = 2 # 0번부터 카메라 포트 찾아서 1씩 올려보기
VIDEO_WIDTH = 1000 # 화면 가로 넓이
WIDTH_CUT = 160
CENTER_LINE = 340 # 세로 센터 라인
NET_LINE = 640 # 네트 라인
CATCH_FRAME = 3
MIN_GAP = 10
ETA_FIX = 80
CENTER_BOUND = 150
# 초기화 변수들
line_on = False
FINAL_MOVE = 0 # 단위 cm
FINAL_ETA = 0 # 단위 ms
FINAL_ANGLE = 0 # 단위 tangent
# 주황색 탁구공 HSV 색 범위 지정 (창문쪽 형광등 두 개 키고 문쪽 형광등 한 개 껐을때 기준)
orangeLower = (1, 130, 240)
orangeUpper = (30, 255, 255)
# 파서 코딩 부분
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type=int, default=64, help="max buffer size")
args = vars(ap.parse_args())
# 데큐 생성
pts = deque(maxlen=args["buffer"])
# if a video path was not supplied, grab the reference
# to the webcam
if not args.get("video", False):
vs = VideoStream(src=0).start()
# otherwise, grab a reference to the video file
else:
vs = cv2.VideoCapture(args["video"])
# allow the camera or video file to warm up
time.sleep(2.0)
line_xy = deque(maxlen=2) # 단위 px
time_xy = deque(maxlen=2) # 단위 s
temp_move = deque() # 단위 px
temp_speed = deque() # 단위 px/ms
# Line Activater 쓰레드 함수
def line_activator(ETA):
global line_on
line_on = True
print("Line Activated / Detecting LOCK")
time.sleep(ETA)
line_on = False
print("Line Deactivated / Detecting UNLOCK")
line_xy.clear()
time_xy.clear()
temp_move.clear()
temp_speed.clear()
# Start streaming
profile = pipeline.start(config)
# Getting the depth sensor's depth scale (see rs-align example for explanation)
depth_sensor = profile.get_device().first_depth_sensor()
depth_scale = depth_sensor.get_depth_scale()
print("Depth Scale is: " , depth_scale)
# We will be removing the background of objects more than
# clipping_distance_in_meters meters away
clipping_distance_in_meters = 1.7 #1.7 meter
clipping_distance = clipping_distance_in_meters / depth_scale
# Create an align object
# rs.align allows us to perform alignment of depth frames to others frames
# The "align_to" is the stream type to which we plan to align depth frames.
align_to = rs.stream.color
align = rs.align(align_to)
# 프레임 단위 무한 루프 영역
try:
while True:
# Get frameset of color and depth
frames = pipeline.wait_for_frames()
# frames.get_depth_frame() is a 640x360 depth image
# Align the depth frame to color frame
aligned_frames = align.process(frames)
# Get aligned frames
#
#
#
#
#
#
aligned_depth_frame = aligned_frames.get_depth_frame() # aligned_depth_frame is a 640x480 depth image
color_frame = aligned_frames.get_color_frame()
#depth_frame = frames.get_depth_frame()
#color_frame = frames.get_color_frame()
if not aligned_depth_frame or not color_frame:
continue
#Depth image, color image
#
#
#
#
#
depth_image = np.asanyarray(aligned_depth_frame.get_data())
color_image = np.asanyarray(color_frame.get_data())
# Remove background - Set pixels further than clipping_distance to grey
grey_color = 153
depth_image_3d = np.dstack((depth_image, depth_image, depth_image)) # depth image is 1 channel, color is 3 channels
bg_removed = np.where((depth_image_3d > clipping_distance) | (depth_image_3d <= 0), grey_color, color_image)
# Render images:
# depth align to color on left
# depth on right
depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET)
images = np.hstack((bg_removed, depth_colormap))
cv2.namedWindow('Align Example', cv2.WINDOW_NORMAL)
cv2.imshow('Align Example', images)
#From version 6, ball tracking
# 화면비 맞추기 (680x750)
color_image = imutils.resize(color_image, width=VIDEO_WIDTH)
depth_image = imutils.resize(depth_image, width=VIDEO_WIDTH)
color_image = color_image[0:750, WIDTH_CUT: 1000 - WIDTH_CUT]
depth_image = depth_image[0:750, WIDTH_CUT: 1000 - WIDTH_CUT]
# 영상처리
depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET)
blurred = cv2.GaussianBlur(color_image, (11, 11), 0)
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, orangeLower, orangeUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
cv2.imshow("mask", mask)
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
center = None
# 감지 했을 경우 (center 좌표 계산됨)
if len(cnts) > 0:
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# rgb 트레킹 레드라인 코드
pts.appendleft(center)
for i in range(1, len(pts)):
if pts[i - 1] is None or pts[i] is None:
continue
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(color_image, pts[i - 1], pts[i], (0, 0, 255), thickness)
#오류인지 확인해야 함
#
#
#
dist = aligned_depth_frame.get_distance(center[0], center[1])
dist *= 100
print(dist)
#realcenter = (center[0] * dist / 135, center[1] * dist / 135)
# 탁구 알고리즘
if line_on == False:
line_xy.append(center)
time_xy.append(time.time())
if len(line_xy) == 2:
if line_xy[0][1] + MIN_GAP < line_xy[1][1]:
temp_move.append(
int(
(1220 - line_xy[0][1])
* (line_xy[0][0] - line_xy[1][0])
/ (line_xy[0][1] - line_xy[1][1])
+ line_xy[0][0]
)
)
temp_speed.append(
int(
(line_xy[0][1] - line_xy[1][1])
/ ((time_xy[1] - time_xy[0]) * 1000)
)
)
if len(temp_move) == CATCH_FRAME:
temp_move.popleft()
temp_speed.popleft()
temp_move_sum = 0
for i in range(CATCH_FRAME - 1):
temp_move_sum += temp_move.popleft()
FINAL_MOVE = int(temp_move_sum / (CATCH_FRAME - 1) * (152.5 / 680))
temp_speed_sum = 0
for i in range(CATCH_FRAME - 1):
temp_speed_sum += temp_speed.popleft()
FINAL_ETA = (
int((1220 - line_xy[1][1]) / (temp_speed_sum / (CATCH_FRAME - 1)))
+ ETA_FIX
)
FINAL_ANGLE = (1220 - line_xy[1][1]) / (
line_xy[1][0] - FINAL_MOVE * (680 / 152.5)
)
print(
"FINAL MOVE : {0}cm / FINAL ETA : {1}ms / FINAL ANGLE : {2}".format(
FINAL_MOVE, FINAL_ETA, FINAL_ANGLE
)
)
# 감지 대기 쓰레드
lineact_tr = threading.Thread(
target=line_activator, args=(FINAL_ETA / 1000,), daemon=True
)
lineact_tr.start()
# 화면 표시 선 코드
# 중앙선
cv2.line(color_image, (CENTER_LINE, 0), (CENTER_LINE, NET_LINE), (255, 255, 255), 2)
# 네트선
cv2.line(color_image, (0, NET_LINE), (VIDEO_WIDTH, NET_LINE), (255, 255, 255), 2)
images = np.hstack((color_image, depth_colormap))
images = imutils.resize(images, width=500)
# 화면 띄우기
cv2.imshow("Pong GPT V5", images)
cv2.imshow("mask", mask)
# q : 종료 r : 리셋
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
cv2.destroyAllWindows()
break
elif key == ord("r"):
line_xy.clear()
time_xy.clear()
temp_move.clear()
temp_speed.clear()
line_on = False
FINAL_MOVE = None
FINAL_ETA = None
FINAL_ANGLE = None
finally:
pipeline.stop()