diff --git a/Linear Regression.ipynb b/Linear Regression.ipynb
new file mode 100644
index 0000000..0571eb9
--- /dev/null
+++ b/Linear Regression.ipynb
@@ -0,0 +1,426 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dataset=pd.read_csv(\"Salary_Data.csv\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " YearsExperience | \n",
+ " Salary | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 39343.0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1.3 | \n",
+ " 46205.0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 1.5 | \n",
+ " 37731.0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 2.0 | \n",
+ " 43525.0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 2.2 | \n",
+ " 39891.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " YearsExperience Salary\n",
+ "0 1.1 39343.0\n",
+ "1 1.3 46205.0\n",
+ "2 1.5 37731.0\n",
+ "3 2.0 43525.0\n",
+ "4 2.2 39891.0"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dataset.head(5)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "x=dataset.iloc[:,:-1].values\n",
+ "y=dataset.iloc[:,1].values"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([ 39343., 46205., 37731., 43525., 39891., 56642., 60150.,\n",
+ " 54445., 64445., 57189., 63218., 55794., 56957., 57081.,\n",
+ " 61111., 67938., 66029., 83088., 81363., 93940., 91738.,\n",
+ " 98273., 101302., 113812., 109431., 105582., 116969., 112635.,\n",
+ " 122391., 121872.])"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "y"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[ 1.1],\n",
+ " [ 1.3],\n",
+ " [ 1.5],\n",
+ " [ 2. ],\n",
+ " [ 2.2],\n",
+ " [ 2.9],\n",
+ " [ 3. ],\n",
+ " [ 3.2],\n",
+ " [ 3.2],\n",
+ " [ 3.7],\n",
+ " [ 3.9],\n",
+ " [ 4. ],\n",
+ " [ 4. ],\n",
+ " [ 4.1],\n",
+ " [ 4.5],\n",
+ " [ 4.9],\n",
+ " [ 5.1],\n",
+ " [ 5.3],\n",
+ " [ 5.9],\n",
+ " [ 6. ],\n",
+ " [ 6.8],\n",
+ " [ 7.1],\n",
+ " [ 7.9],\n",
+ " [ 8.2],\n",
+ " [ 8.7],\n",
+ " [ 9. ],\n",
+ " [ 9.5],\n",
+ " [ 9.6],\n",
+ " [10.3],\n",
+ " [10.5]])"
+ ]
+ },
+ "execution_count": 40,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "x"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=1/3,random_state=0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[ 2.9],\n",
+ " [ 5.1],\n",
+ " [ 3.2],\n",
+ " [ 4.5],\n",
+ " [ 8.2],\n",
+ " [ 6.8],\n",
+ " [ 1.3],\n",
+ " [10.5],\n",
+ " [ 3. ],\n",
+ " [ 2.2],\n",
+ " [ 5.9],\n",
+ " [ 6. ],\n",
+ " [ 3.7],\n",
+ " [ 3.2],\n",
+ " [ 9. ],\n",
+ " [ 2. ],\n",
+ " [ 1.1],\n",
+ " [ 7.1],\n",
+ " [ 4.9],\n",
+ " [ 4. ]])"
+ ]
+ },
+ "execution_count": 42,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "x_train"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[ 1.5],\n",
+ " [10.3],\n",
+ " [ 4.1],\n",
+ " [ 3.9],\n",
+ " [ 9.5],\n",
+ " [ 8.7],\n",
+ " [ 9.6],\n",
+ " [ 4. ],\n",
+ " [ 5.3],\n",
+ " [ 7.9]])"
+ ]
+ },
+ "execution_count": 43,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "x_test"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)"
+ ]
+ },
+ "execution_count": 44,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from sklearn.linear_model import LinearRegression\n",
+ "regressor=LinearRegression()\n",
+ "regressor.fit(x_train,y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "y_pred=regressor.predict(x_test)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([ 40835.10590871, 123079.39940819, 65134.55626083, 63265.36777221,\n",
+ " 115602.64545369, 108125.8914992 , 116537.23969801, 64199.96201652,\n",
+ " 76349.68719258, 100649.1375447 ])"
+ ]
+ },
+ "execution_count": 46,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "y_pred"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([ 37731., 122391., 57081., 63218., 116969., 109431., 112635.,\n",
+ " 55794., 83088., 101302.])"
+ ]
+ },
+ "execution_count": 47,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "y_test"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deZxcVZn/8c83CYSELSwBQ0ISJFFZfqBDG4FBRZFVHHAGnDiNZJCZKIP7gmAYF0ZUBAVRYYygRBNZJi4wDIsIAi5szRo2SZBsJCZBlgTCluT5/XFO0VXV1Wtq6+7v+/WqV9U9d6lzK5166jnn3HMVEZiZmVXbkEZXwMzMBiYHGDMzqwkHGDMzqwkHGDMzqwkHGDMzqwkHGDMzqwkHGKs7SQslvafR9eiPJD0v6fUNrsNHJJ1Xo2MfKOmhWhy7B+99vqR/a8R7D1QOMNYnkg6Q9CdJz0l6WtIfJb210fWqBUmXSHolf7kXHvc3oi4RsUVE/KUR7w0gaVPgdOBsSW8v+jxekBRln9H43h4/Im6OiD16WBdJOj3/YHle0lJJc3q4779Jurms+FvAlyQN62W1rRMOMNZrkrYCrga+B2wLjAW+Crxc4/dt5H/8b+Uv98Jj73q+eRN96R0FPBoRT0bE7wufB1AICqOKPqPFxTtKGiKpmt85HwamAu/OdXgrcHNfDxYRS4HHgSOrUjtzgLE+eQNARFwaEesj4sWI+E1EPAAgaVdJN0n6m6SnJM2RNKrSgSRNkXSbpGclLZf0/fwrubA+JJ0saT4wX9IPJH277Bj/K+lTFY7935LOKSu7UtJn8usvSHpS0hpJf5Z0UG8/CEn/LOkvOegi6XBJf5U0uqj+n8jbPCXp7OIvWUkflvSIpGckXS9pQmfnXlQ2Kb8eLukcSYslrcjnOyKvOzD/ov+spJX5sz2h6NgjJH1b0qKchf6haN99c3b6rKT7JR1YdMqHA7f04vP5g6T/knQb8AIwPmcPj+TP/fHiZilJ75G0sGh5qaTPSJqX63mppOF59VuB6woZXUQsj4gfFe07StJP8rkvlXRGDnL/D/g+UMjAniqq8s3Ae3t6ftaNiPDDj149gK2AvwGzSF8425StnwQcDAwHRgO3AucVrV8IvCe/3gfYFxgGTAQeAT5VtG0AN5AypRHAFGAZMCSv3x5YC+xYoZ7vAJYAysvbAC8COwFvzOt2yusmArt2cr6XAF/r4vOYk7fZLtftyLL6/y7XfzzwGPBved3RwAJgt3z+pwN/6uzci8om5dfnAVfl9VsC/wt8I687EFgHnAFsAhyRP6dt8vofkL5MxwJDgf3zv9fY/G97BOkH6MF5eXTe7y7g2AqfwcRct2Fl5X/I/9675XoMA94HvB4Q8O78b7JX3v49wMKi/ZcCtwOvy59v8ef3r7lunyP9HQ0te++rgQuAkXn/u4ET87p/A26ucB4fAO5s9P+xgfJoeAX86J+P/IVxSf4CWJe/6Dp8yedtjwbuLVpeSA4wFbb9FPCrouUgNYEUb/MIcHB+/THgmk6OJWAx8I68/O/ATfn1JGBl/kLbpJtzvQR4CXi26DGraP2o/D7zgB+W7RvAYUXL/wHcmF9fW/jCy8tDSEFgQhfnHrnuImUEuxat2w94Ir8+MH9xDytav5IUzIfkdXtXONcvAD8rK7semJZfzy8+n6JtJtJ5gPlSN5/v1cDJ+XWlADO1aPk7wPeLlj8E3Jg/i78Bn8vlY/M5Di/b9ob8urMAczjwWKP/fw2Uh5vIrE8i4pGI+NeIGAfsScoKzgOQtIOky3Lz02pgNinT6EDSGyRdnZuVVgNfr7DtkrLlWcBx+fVxwM86qWMAlwEfzEX/Qso2iIgFpGD2FWBlru9OXZzyORExqugxreh9ngX+J38O366wb3H9F5E+K4AJwHdzU9SzwNOkwDG2k32LjSb9Mr+7aP/rcnnB3yJiXdHyWmAL0ue7Gam/odwE4NjCMfNxDwDG5PXPkLKl3ig5B0lHSrpDaXDIs8AhdPL3kf21wjkAEBE/i4iDSEH+ZOAbualzAikjW1F0Hj8AduymrluSfkBYFTjA2EaLiEdJv/L3zEXfIP2a3SsitiIFAXWy+4XAo8DkvO0XK2xbPuX3bOAoSXuTMqlfd1G9S4Fjct/G24BfFNX75xFxAOnLKICzujhOpyS9mdThfClwfoVNdi56PZ7UjAbpi/cjZYFrRET8qWj7zqY7f4r0C32Pon23jtTZ3Z2nSBnZrhXWLSFlMMV12jwivpnXP0Dug+uF184h9/PMJf2N7BgRo4Df0PnfR8/eIOLViLgMeIj0d7iEFIy2LTqPrSJir/I6ldkNaMgIwYHIAcZ6TdKbcufxuLy8MylLuD1vsiXwPPCspLHA57s43JbAauB5SW8CTuru/SON9rmLlLn8IiJe7GLbe4FVwEXA9TnbQNIbJb07dxi/RPqyXt/de5eTtBkp4H0ROAEYK+k/yjb7vKRt8uf0SeDyXP7fwGmS9sjH2lrSsT1534jYAPwIOFfSDnn/sZIO7eG+Pwa+I2knSUMl7Zc/i9nA+yQdmss3ywMGxuXdrwHe2ZM6dmI4sCnp32S9pCOBXg+ugNcGSBwhacvcef9eUt/anRGxhDQY4RxJW+X1kyS9I+++AhgnaZOyw76T1HRpVeAAY32xhpQN3CHpBVJgeRD4bF7/VeDvgOeA/wN+2cWxPkdqulpD+sK8vItti80C/h+dNI+VuZTUtv/zorLhwDdJv+b/CuxAChKdOUWl13gURh59A1gaERdGxMukbO1rkiYX7XslqYP5PtLncTFARPyKlDVdlpsHHyT1AfTUF0iDBG7P+/+W9AXbE58j9RndRWqaO4s0cGIJaSjyF0lBYAnpB0Lhu+J/gTd105zYqRzgPw38Kr/vMaQ+mL5YTRoYsYTUdPd1YHpE3JbXHwdsDjyc1/8PqbMf0uCJ+aQmtL9CCtDAZNI5WhUURteY9Sv5l+hsYGL+Rd6UJAWp+W9Bo+tSLZKmA7tHRIeh4f2ZpO8CD0XEzEbXZaBwgLF+JzdrXAbcHxFnNLo+XRmIAcasp9xEZv2KpN1Io3zGkEetmVlzcgZjZmY14QzGzMxqolkm0Gu47bffPiZOnNjoapiZ9St33333UxExutI6B5hs4sSJtLW1NboaZmb9iqRFna1zE5mZmdWEA4yZmdWEA4yZmdWEA4yZmdWEA4yZmdWEA4yZmdWEA4yZmdWEA4yZ2SD1/PNwyCFw7721Ob4DjJnZIPT978OWW8INN8D5le7DWgW+kt/MbBB56ikYXTSxy0c/ChdeWJv3cgZjZjZIfOUrpcFl8eLaBRdwBmNmNuAtWQLjx7cvf+lL8NWv1v59ncGYmQ1g//EfpcFl1aqi4DJnDkycCEOGpOc5c6r63g4wZmYD0KOPgtTeBPa970EEbL993mDOHJg+HRYtSisWLUrLVQwyDjBmZgNIBLz//bDbbu1la9bAxz5WtuGMGbB2bWnZ2rWpvEocYMzMBoi77kqtXb/+dVr++c9TwNliiwobL15c+SCdlfdBzQKMpB9LWinpwaKysyU9KukBSb+SNKpo3WmSFkj6s6RDi8r3kTQvrztfknL5cEmX5/I7JE0s2meapPn5Ma1W52hm1gw2bID99oMpU9LymDHw0kvwwQ92sVNxx0xPyvuglhnMJcBhZWU3AHtGxF7AY8BpAJJ2B6YCe+R9LpA0NO9zITAdmJwfhWOeCDwTEZOAc4Gz8rG2Bb4MvA2YAnxZ0jY1OD8zs4b77W9h6FC4/fa0fO21sGwZDB/ezY5nngkjR5aWjRyZyqukZgEmIm4Fni4r+01ErMuLtwPj8uujgMsi4uWIeAJYAEyRNAbYKiJui4gAfgocXbTPrPx6LnBQzm4OBW6IiKcj4hlSUCsPdGZm/dqrr6aBXwcfnJbf8hZYtw4O6+m3XWsrzJwJEyak0QATJqTl1taq1bGRfTAfBq7Nr8cCS4rWLc1lY/Pr8vKSfXLQeg7YrotjdSBpuqQ2SW2rVq3aqJMxM6uXuXNh003TwC+AP/0J7rknZTK90toKCxemNraFC6saXKBBF1pKmgGsAwrj4VRhs+iivK/7lBZGzARmArS0tFTcxsysWaxdC9tsA6+8kpaPOAKuvjolIM2o7hlM7nQ/EmjNzV6QsoydizYbByzL5eMqlJfsI2kYsDWpSa6zY5mZ9VszZ8Lmm7cHl3nz4P/+r3mDC9Q5wEg6DPgC8A8RUTwA+ypgah4ZtgupM//OiFgOrJG0b+5fOR64smifwgixY4CbcsC6HjhE0ja5c/+QXGZm1u8880wKIh/5SFo+4YQ09HjPPRtbr56oWROZpEuBA4HtJS0ljew6DRgO3JBHG98eER+NiIckXQE8TGo6Ozki1udDnUQakTaC1GdT6Le5GPiZpAWkzGUqQEQ8Lem/gLvydmdERMlgAzOz/uDrXy+97vGJJ1LHfn+h9laqwa2lpSXa2toaXQ0zM5Ytg7FFQ5NOPRW+8Y3G1acrku6OiJZK6zybsplZE/nUp+C7321fXrECdtihcfXZGJ4qxsysCcyfn/paCsHl299OfS39NbiAMxgzs4b74Afhssval597DrbaqnH1qRZnMGZmDXLvvSlrKQSXSy5JWctACC7gDMbMrO4i4F3vgltuScvbbgtPPgmbbdbYelWbMxgzG1hqfJfGjXXLLalqheBy1VXwt78NvOACzmDMbCAp3KWxcCOtwl0aoerzbPXWunWwxx7w2GNpebfd4IEHYNgA/hZ2BmNmA0cd7tLYF1ddBZts0h5cbr0VHn54YAcXcAZjZgNJHe7S2Bsvvgivex2sXp2W3/3udP+WZp4/rJqcwZjZwFGHuzT21E9+ku7fVQgu990HN944eIILOMCY2UBSh7s0due551IQ+fCH0/K//EsaNbb33nWrQtNwgDGzgaMOd2nsyjnnwKhR7csLFjTdILa6ch+MmQ0sra11HzG2YkXqayn49KfhO9+paxWakjMYM7ON8IUvlAaXZcscXAocYMzM+uB3v0utcN/6Vlr+xjdSX8uYMY2tVzNxE5mZWS+VjwR75pnSvhdLnMGYmfXQpZeWBpf99ktZi4NLZc5gzMy6EZHmDyv21FOw3XaNqU9/4QzGzKwL55xTGlyOOy4FHAeX7jmDMTOr4JVXYPjw0rK1a2HEiMbUpz9yBmNmVuYTnygNLqefnrIWB5fecQZjZpatXg1bb11atm4dDB3amPr0d85gzMyAI48sDS4//GHKWhxc+s4ZjJkNasuXw047lZZt2DC4Zj2uFWcwZjZoveENpcHlqqtS1tKj4NLkt2ZuBs5gzGzQeeQR2H330rKIXhygiW/N3EycwZjZoCKVBpfbb+9lcIGmvTVzs3GAMbNB4Y9/LG36GjYsBZa3va0PB2uyWzM3KwcYMxvwJDjggPblxx6DV1/diAM20a2Zm5kDjJkNWL/6VWnWsueeKWuZPHkjD9wEt2buD9zJb2YDTqXJKVesgB12qNIbFDryZ8xIzWLjx6fg4g7+Es5gzGxAmTatNLi8//0p4FQtuBS0tsLChemimYULHVwqcAZjZgNCpckp16yBLbZoTH3MGYyZDQD77FMaXPbaK2UtDi6N5QzGzPqtZ5+FbbYpLXv5Zdh008bUx0o5gzGzfkkqDS6trSlrcXBpHjULMJJ+LGmlpAeLyraVdIOk+fl5m6J1p0laIOnPkg4tKt9H0ry87nwpDTqUNFzS5bn8DkkTi/aZlt9jvqRptTpHM6u/hQs7zhW2YQPMnt2Q6lgXapnBXAIcVlZ2KnBjREwGbszLSNodmArskfe5QFJhkuwLgenA5PwoHPNE4JmImAScC5yVj7Ut8GXgbcAU4MvFgczM+i8JdtmlffmMM3oxOaXVXc0CTETcCjxdVnwUMCu/ngUcXVR+WUS8HBFPAAuAKZLGAFtFxG0REcBPy/YpHGsucFDObg4FboiIpyPiGeAGOgY6M+tH7rqrYxCJgP/8z8bUx3qm3n0wO0bEcoD8XBiZPhZYUrTd0lw2Nr8uLy/ZJyLWAc8B23VxrA4kTZfUJqlt1apVG3FaZlYrEkyZ0r48e3YfJqe0hmiWTv5KCW50Ud7XfUoLI2ZGREtEtIwePbpHFTWzCmpwb5Qrr6yctfh6xv6j3gFmRW72Ij+vzOVLgZ2LthsHLMvl4yqUl+wjaRiwNalJrrNjmVktFO6NsmhRigCFe6NsRJCR4Oij25dvvtlZS39U7wBzFVAY1TUNuLKofGoeGbYLqTP/ztyMtkbSvrl/5fiyfQrHOga4KffTXA8cImmb3Ll/SC4zs1qo4r1RzjuvctbyznduRP2sYWp2oaWkS4EDge0lLSWN7PomcIWkE4HFwLEAEfGQpCuAh4F1wMkRsT4f6iTSiLQRwLX5AXAx8DNJC0iZy9R8rKcl/RdwV97ujIgoH2xgZtVShXujVJqc8tFH4Y1v3Ih6WcMpnHcC0NLSEm1tbY2uhln/M3FiahYrN2FCumilGyefDBdcUFrmr6X+Q9LdEdFSaV2zdPKbWX/Vx3ujrFuXmsOKg8uKFQ4uA4kDjJltnNZWmDkzZSxSep45s8vhXu96F2yySfvyhAk1mlLfGsqTXZrZxmtt7dH44eefhy23LC1buxZGjKhRvayhnMGYWV1svXVpcHnf+1LW4uAycDmDMbOaevJJGDeutGz9+o6jxmzg8T+xWX9Ugyvna0EqDS6nnFJ5SLINTM5gzPqbwpXzhYsbC1fOQ9PMo3L//fDmN5eWeXTY4OPfEWb9TRWvnK8FqTS4/OhHDi6DlTMYs/6mClfO18L118NhZTfGcGAZ3JzBmPU348f3rrwOpNLgct11Di7mAGPW//Txyvk+6WYwwWmnVZ6c8tBDMXMTmVm/U+jInzEjNYuNH5+CS7U7+LsZTFAeWG69Fd7+9upWwfo3T3aZebJLszKdTGJ52GY3c/1LpfPn+2tk8OpqsktnMGZWWdmggfUMYRjr4aX2sgULYNdd61wv6zfcB2NmlRUNGtiWv6XgUiTCwcW65gBjZpWdeSZrRuyACJ5h29eKn/nhFW4Ssx5xgDGzinRcK1u9uKJ9mQ3E7DmMmv6BBtbK+hP3wZhZiSVLOl5S88orsMkmQ4DmmIrG+gdnMGb2Gqk0uOy/f+prKb45mFlPOYMxM+66C6ZMKS3bsKHjRZRmveEMxmyQk0qDy8knp6zFwcU2ljMYs0Fq7lw49tjSMo8Os2pyBmM2CEmlweWCCxxcrPocYMwGkTPPrDw55UknNaY+NrD1qIlM0tCIWN/9lmbWrMoDy/XXwyGHNKYuNjj0NINZIOlsSbvXtDZmVnVTp1bOWhxcrNZ62sm/FzAVuEjSEODHwGURsbpmNTOzjRKRbuNS7KGHYHf/TLQ66VEGExFrIuJHEbE/cArwZWC5pFmSJtW0hmbWa7vu2jG4RDi4WH31uA8GeC9wAjAR+DYwB3g7cA3whhrVz8x64cUXO97scuVKGD26MfWxwa2nTWTzgd8BZ0fEn4rK50p6R/WrZWa9VenCSA89tkbqtoksZy+XRMSJZcEFgIj4RE1qZmY9smJFx+Dy0ksOLtZ43QaYPDz5XXWoi5n1kgSve1378m67pcAyfHjj6mRW0NMmsj9J+j5wOfBCoTAi7qlJrcysS7ffDvvtV1rmySmt2fQ0wOyfn88oKgvg3dWtjpl1as4cmDEDLVpYUvyhD8FPf9qYKpl1pUcBJiLcRGbWSHPmMPvDN/GhVxaWFMfsOdDqm4BZc1L0sCdQ0nuBPYDNCmURcUbne/QvLS0t0dbW1uhqmFVU3vT1cc7nfD4JEybAwoUNqZMZgKS7I6Kl0roeXWgp6b+BfwY+Dgg4FpiwERX6tKSHJD0o6VJJm0naVtINkubn522Ktj9N0gJJf5Z0aFH5PpLm5XXnS+m/oaThki7P5XdImtjXupo10imnVJjmBaXgArB4cf0rZdZDPZ2LbP+IOB54JiK+CuwH7NyXN5Q0FvgE0BIRewJDSdPQnArcGBGTgRvzMnn+s6mk7Okw4II8dBrgQmA6MDk/DsvlJ+a6TgLOBc7qS13NGkmCs89uX76IEwnKok3x/Y3NmkxPA8yL+XmtpJ2AV4FdNuJ9hwEjJA0DRgLLgKOAWXn9LODo/Poo0rxnL0fEE8ACYIqkMcBWEXFbpHa+n5btUzjWXOCgQnZj1uwOPLBC1jJ7DieOvKy0cOTINP++WZPqaYC5WtIo4GzgHmAhcFmXe3QiIp4EzgEWA8uB5yLiN8COEbE8b7Mc2CHvMhZYUnSIpblsbH5dXl6yT0SsA54Dtiuvi6Tpktokta1ataovp2NWNYXbFN9yS3vZrbfmCyZbW2HmzNTnIqXnmTPdwW9NraejyP4rv/yFpKuBzSLiub68Ye5bOYqUAT0L/I+k47rapVKVuijvap/SgoiZwExInfxd1MGspno0zUtrqwOK9StdBhhJ/9jFOiLil314z/cAT0TEqnycX5Kus1khaUxELM/NXyvz9ksp7e8ZR2pSW5pfl5cX77M0N8NtDTzdh7qa1dTLL8Nmm5WW/eUvsMvGNECbNYnuMpj3dbEugL4EmMXAvpJGkvp2DgLaSDMETAO+mZ+vzNtfBfxc0neAnUid+XdGxHpJayTtC9wBHA98r2ifacBtwDHATdHT8dhmdeLJKW2g6zLARMQJ1X7DiLhD0lxSX8464F5SM9UWwBWSTiQFoWPz9g9JugJ4OG9/ctHtm08CLgFGANfmB8DFwM8kLSBlLlOrfR5mfbViRen8YQCrV8OWWzamPma14gstM19oafXgrMUGmqa70NJssLnvvo7BZd06Bxcb2Op+oaXZYCPBW97SvjxpUgosQ4d2vo/ZQNDXCy3XsXEXWpoNeL/6VYULJgPmz29MfczqrbcXWn4LuBt4gj5eaGk2GEjwj0WD/I8/3s1hNvh0dx3MW4ElhQstJW0BzAMeJc3xZWZFzjwTTj+9tMyBxQar7jKYHwKvAEh6B+kalR+Spl6ZWduqmfUvUmlwOfdcBxcb3Lq70HJoRBSugP9nYGZE/II0Zcx9ta2aWf+w114wb15pmQOLWfcZzNA81QqkK+5vKlrX09stmw1YUmlwufZaBxezgu6CxKXALZKeIo0k+z2ApEmkZjKzQckXTJp1r8sMJiLOBD5Lmo7lgKL5vIaQLro0G1RefbVjcLnnHgcXs0q6beaKiNsrlD1Wm+qYNS9nLWa909PrYMwGrVWrOgaXFSscXMy64456sy44azHrO2cwZhXcf3/H4PLyyw4uZr3hDMasjLMWs+pwBmOWzZ1beXJKBxezvnEGY0bHwLLbbvDww42pi9lA4QzGBrXTT6+ctTi4mG08ZzA2aJUHlo9+FC68sDF1MRuInMHYoPOud1XOWroNLnPmwMSJMGRIep4zp0Y1NBsYHGBsUJHg5pvbly+6qIed+HPmwPTpsGhR2mHRorTsIGPWKYWHyADQ0tISbW1tja6G1chGDz2eODEFlXITJsDChX2slVn/J+nuiGiptM4ZjA1o69d3DC5//GMfhh4vXty7cjNzgLGBS4JhZcNYImD//ftwsPHjOy9334xZRQ4wNuA891zHrGXx4o28YPLMM2HkyNKykSPhiCPcN2PWCQcYG1AkGDWqtCwCdt55Iw/c2gozZ6Y+Fyk9z5wJ11wDa9eWbrt2LcyYsZFvaNb/OcBYdTWoueixxzpmLWvXVnmal9bW1KG/YUN6bm1134xZF3yhpVVPYShv4Rd9obkI0pdxjTR0csrx4yuPLuusz8ZsEHEGY9UzY0Zdm4uuu65jcNmwoc6TU3bWN3PmmXWshFlzcgZj1VPH5qLywDJ6NKxcWfW36V4hM5sxI53n+PEpuNQwYzPrL5zBWPV0NZS3Sn7wg8rTvDQkuBRU6psxMwcYq6IaNxdJ8LGPtS//+7/7Xi1mzcwBxqqns6G8G/mL/oQTKmctM2du1GHNrMbcB2PV1dpa1Sai8sBy4YVpWn0za37OYKwpTZpUOWupWnDx9C5mNecAY00lIgWWxx9vL/vd76rc1+Kp983qoiEBRtIoSXMlPSrpEUn7SdpW0g2S5ufnbYq2P03SAkl/lnRoUfk+kubldedL6TevpOGSLs/ld0iaWP+zHMBq9OtfSocsFgEHHliVw7er8/U6ZoNVozKY7wLXRcSbgL2BR4BTgRsjYjJwY15G0u7AVGAP4DDgAklD83EuBKYDk/PjsFx+IvBMREwCzgXOqsdJDQo1+PW/dm3H5rC//KWGI8Q8vYtZXdQ9wEjaCngHcDFARLwSEc8CRwGz8mazgKPz66OAyyLi5Yh4AlgATJE0BtgqIm6LdNe0n5btUzjWXOCgQnZjG6nKv/4l2Hzz0rII2GWXPtavJ+pwvY6ZNSaDeT2wCviJpHslXSRpc2DHiFgOkJ93yNuPBZYU7b80l43Nr8vLS/aJiHXAc8B25RWRNF1Sm6S2VatWVev8BrYq/fpfurRj1rJ6dZ2ua/H0LmZ10YgAMwz4O+DCiHgL8AK5OawTlTKP6KK8q31KCyJmRkRLRLSMHj2661pbUoVf/1LH6fMjYMstN6JevVGj63XMrFQjAsxSYGlE3JGX55ICzorc7EV+Xlm0ffHX0ThgWS4fV6G8ZB9Jw4CtgaerfiaD0Ub8+r/tto5Zy/r1Dboa39O7mNVc3QNMRPwVWCLpjbnoIOBh4CpgWi6bBlyZX18FTM0jw3YhdebfmZvR1kjaN/evHF+2T+FYxwA35X4a21h9/PUvld6qePToFFjKR42Z2cDRqP/eHwfmSHoAeDPwdeCbwMGS5gMH52Ui4iHgClIQug44OSLW5+OcBFxE6vh/HLg2l18MbCdpAfAZum6Cs97qxa//WbN6OTllT4dA+0JJs+YXEX5EsM8++4R1YfbsiAkTIqT0PHt2t7ukUNL+OOaYHrzHyJGlO40c2fG9erqdmdUc0BadfK8q3HIEQEtLS7S1tTW6Gs2p/E6VkPpdOmka+/Sn4bzzSst69Gc2cWLlu0NOmJAypd5uZ2Y1J+nuiGipuM4BJnGA6UIvvtDLm8POOgtOOaWH7zNkSOVIJKXmuN5uZ2Y111WAcRerda8H17585SuV+1p6HEPm+i8AAAzuSURBVFyg50OgfaGkWb/gAGPd6+ILvTA55Ve/2l587719HHrc0yHQvlDSrF9wgLHudfKFfuyOt3ScnHL2HN589MS+je7q6RBoXyhp1i+4DyZzH0w35sxJ840tXsy6nXdhk8WPl6xeuhTG3ty7wQBm1v+5k78HHGB65vWvhyeeKC177U/Io7vMBp2uAoxvmWw98vzzHecKe/75spmQPQ2+mRVxH4x1a7vtSoPLnnumrKV8mn2P7jKzYg4w1qlly1If+tNF04SuWwfz5nWyg0d3mVkRBxirSIKxY9uXP/vZlLUMHdr5Ph7dZWbF3AdjJebNg732Ki3r1TiQ1lYHFDMDnMFYEak0uFx4YYPu1WJmA4IzGOM3v4FDDy0tc2Axs43lDGaQk0qDyzXXOLiYWXU4wAxSF11UeXLKww9vTH3MbOBxE9kgVB5Y7rsP9t67MXUxs4HLGcwg8sUvVs5aHFzMrBacwQwCGzZ0vH5lyRIYN64x9TGzwcEZzAB39NGlwWWLLVLW4uBiZrXmDGaAevHFjrO2rF7dccJKM7NacQYzAL3+9aXB5YADUtbi4GJm9eQAUytz5qT7o/Tlzo59tHp16sQvvl/Lq6/C739f87c2M+vAAaYW5uQ7Oy5alFKHRYvScg2DzOGHw9Zbty9/9KPprYe5EdTMGsR3tMyqekfLOt7Zcdmy0lmPIY0aKx+ObGZWC13d0dIZTC3U6c6Ou+5aGlyuvjplLQ4uZtYM3IBSC+PHV85gqnRnx0cegd13Ly1zImpmzcYZTC3U8M6OUmlwueMOBxcza04OMLVQgzs7/uEPpU1fm/AKoSFM+cDEuoxQMzPrLTeR1UoV7+xY3qfy2GZ7MfmleRC0j1ArvKeZWZNwBtPEfvGL0uCy114QEyam4FJs7VqYMaO+lTMz64YzmCYUka7PLLZiBeywAzCkPiPUzMw2ljOYJvO975UGl3/6pxRwdtghF3Q2Eq1KI9TMzKrFGUyTWLcONtmktOz552Hzzcs2PPPM1Oeydm17WZVGqJmZVZMzmCbw+c+XBpfPfS5lLR2CC9RkhJqZWS04g2mgF15I92cp9uqrPZg/rIoj1MzMaqVhGYykoZLulXR1Xt5W0g2S5ufnbYq2PU3SAkl/lnRoUfk+kubldedLacyVpOGSLs/ld0iaWO/z684//VNpcDn/fE9OaWYDSyObyD4JPFK0fCpwY0RMBm7My0jaHZgK7AEcBlwgqXCPxguB6cDk/Dgsl58IPBMRk4BzgbNqeyo9t3Jlatn65S/byzZsgI9/vEpv0IDbBJiZVdKQACNpHPBe4KKi4qOAWfn1LODoovLLIuLliHgCWABMkTQG2Coibos0JfRPy/YpHGsucFAhu6m6Xnyh77037Lhj+/LcuVWenLIBtwkwM+tMozKY84BTgA1FZTtGxHKA/FwYmDsWWFK03dJcNja/Li8v2Sci1gHPAduVV0LSdEltktpWrVrV+7Po4Rf6/PkpiDzwQHtZRGomq6oZM0pHl4EvwjSzhql7gJF0JLAyIu7u6S4VyqKL8q72KS2ImBkRLRHRMnr06B5Wp0gPvtCHD4c3vKF99a231nByyjrdJsDMrCca0aX898A/SDoC2AzYStJsYIWkMRGxPDd/rczbLwV2Ltp/HLAsl4+rUF68z1JJw4CtgaerfiZdfKE/+SSMG1daXPNZj2t8mwAzs96oewYTEadFxLiImEjqvL8pIo4DrgKm5c2mAVfm11cBU/PIsF1Infl35ma0NZL2zf0rx5ftUzjWMfk9qv/13skX98e3+HFJcHn44TpNqV/D2wSYmfVWM11o+U3gYEnzgYPzMhHxEHAF8DBwHXByRKzP+5xEGiiwAHgcuDaXXwxsJ2kB8BnyiLSqK/tCf4zJiOD7a/4VgPPOS4Flt91q8u4d+SJMM2siqsUP+/6opaUl2traer/jnDnEF2fwgcVnM5djXytevRq23LKKFTQza0KS7o6IlkrrmimD6Z9aWzlo14WvBZef/SxlLQ4uZjbY+brxKjjppHQZzNVXw2abNbo2ZmbNwRlMFRx7LPz2tw4uZmbFHGDMzKwmHGDMzKwmHGDMzKwmHGDMzKwmHGDMzKwmHGDMzKwmHGDMzKwmHGDMzKwmPBdZJmkVUGGu+6a2PfBUoyvRYIP9Mxjs5w/+DKCxn8GEiKh4Qy0HmH5MUltnk8wNFoP9Mxjs5w/+DKB5PwM3kZmZWU04wJiZWU04wPRvMxtdgSYw2D+DwX7+4M8AmvQzcB+MmZnVhDMYMzOrCQcYMzOrCQeYfkjSzpJ+J+kRSQ9J+mSj69QIkoZKulfS1Y2uSyNIGiVprqRH89/Cfo2uUz1J+nT++39Q0qWSBvwt/yT9WNJKSQ8WlW0r6QZJ8/PzNo2sYzEHmP5pHfDZiNgN2Bc4WdLuDa5TI3wSeKTRlWig7wLXRcSbgL0ZRJ+FpLHAJ4CWiNgTGApMbWyt6uIS4LCyslOBGyNiMnBjXm4KDjD9UEQsj4h78us1pC+WsY2tVX1JGge8F7io0XVpBElbAe8ALgaIiFci4tnG1qruhgEjJA0DRgLLGlyfmouIW4Gny4qPAmbl17OAo+taqS44wPRzkiYCbwHuaGxN6u484BRgQ6Mr0iCvB1YBP8nNhBdJ2rzRlaqXiHgSOAdYDCwHnouI3zS2Vg2zY0Qsh/TjE9ihwfV5jQNMPyZpC+AXwKciYnWj61Mvko4EVkbE3Y2uSwMNA/4OuDAi3gK8QBM1jdRa7mc4CtgF2AnYXNJxja2VlXOA6ackbUIKLnMi4peNrk+d/T3wD5IWApcB75Y0u7FVqrulwNKIKGSuc0kBZ7B4D/BERKyKiFeBXwL7N7hOjbJC0hiA/LyywfV5jQNMPyRJpLb3RyLiO42uT71FxGkRMS4iJpI6dm+KiEH16zUi/goskfTGXHQQ8HADq1Rvi4F9JY3M/x8OYhANcihzFTAtv54GXNnAupQY1ugKWJ/8PfAhYJ6k+3LZFyPimgbWyerv48AcSZsCfwFOaHB96iYi7pA0F7iHNKryXpp0upRqknQpcCCwvaSlwJeBbwJXSDqRFHiPbVwNS3mqGDMzqwk3kZmZWU04wJiZWU04wJiZWU04wJiZWU04wJiZWU04wNiApuQPkg4vKvuApOsaXKcrJD0g6RNl674m6UlJ9xU9tqxxfa6v9XvY4ORhyjbgSdoT+B/SnG1DgfuAwyLi8Y045rCIWNfHfccBt0TErhXWfQ14KiLO62vdelEPkb4DBut8blZjzmBswIuIB4H/Bb5AujDtpxHxuKRpku7MWcIFkoYASJopqS3fa+RLheNIWirpPyX9EXh/vh/Jw5LurzRVjaQRkmZJmifpHknvyKt+A+yU37dH05tIOkXSzPz6zfmYI3LGMyvfH2i+pA8X7XNqPr8HCuchaVK+f8p/ky5SHJPPa1Re3+EzkTRM0rOSvpnP9TZJO+TtXyfpyvwe90t6W2fH6dU/mg0MEeGHHwP+AWwO/BmYBwwH9gR+DQzL62cC/5Jfb5ufhwG/B3bPy0uBzxQdczmwaX49qsJ7fgH4UX69B7AI2BSYBNzXST2/BjxJyrLuA36by4cAfyRN8HgvsG/R9vcAm5Fm0V0K7AgcAVwAKO97HWmurkmkGajfWvSeS4FRnX0m+XMI4PBc/h3g1Pz6F8DHij6vrbr6bP0YXA9PFWODQkS8IOly4PmIeFnSe4C3Am2ppYgRwJK8+QfztBvDSDP17k77PF+XFx32IWC2pCtJX6jlDgDOzu//kKRlpC/4V7qp7tlR1kQWERsk/Ssp6Hw/Im4vWv3riHgJeEnSrfm83gMcTgpGAFsAbyBNhPh4RNxV4X27+kxejIhr8+u7gbfn1weSb/QVqclwdTefrQ0iDjA2mGyg/f4xAn4cEf9ZvIGkyaQ7ZU6JiGdz01fxrXhfKHp9KPBOUlZxuqQ9I2J98eGqXP/JwPOkoFesvCM18nt/LSIuLl4haRKl51CymsqfyTBKg+J6Sr87yt+/4nFs8HG7qA1WvwU+IGl7AEnbSRpPauJZQ/olPoYURDqQNBQYFxE3AZ8HRpPuqljsVqA1b78bMAZY0JfK5j6Sc0kTnY6VVHzXwqMlDc/n8nagDbgeOFH5JmSSxhXOtQudfSZd+R3w0bz9UKU7bfblODYAOYOxQSki5kn6KvDb3AH9KumLso3UHPYgaYbiP3ZyiGHAz/Pw3iHAWZFuX13se8APJc3Lxz8+Il7JzUZd+XxuDit4H3Am8N2IWCDphFzvP+T1dwHXAjsDX46IFcA1kt4E3J7fbw2pP6VTXXwmXd2K+GPAjyR9hDSr8Uci4s5OjrO4uxO3gcXDlM36sXoOazbrLTeRmZlZTTiDMTOzmnAGY2ZmNeEAY2ZmNeEAY2ZmNeEAY2ZmNeEAY2ZmNfH/AcuMY1LRIx4XAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "