forked from microsoft/nlp-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Interpreter.py
183 lines (153 loc) · 6.64 KB
/
Interpreter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""Utilities that enables you to explain every hidden state in your model"""
import torch
from torch import nn
from torch import optim
from tqdm import tqdm
import numpy as np
import matplotlib.pyplot as plt
def calculate_regularization(sampled_x, Phi, reduced_axes=None, device=None):
""" Calculate the variance that is used for Interpreter
Args:
sampled_x (list of torch.FloatTensor):
A list of sampled input embeddings $x$, each $x$ is of shape
``[length, dimension]``. All the $x$s can have different length,
but should have the same dimension. Sampled number should be
higher to get a good estimation.
reduced_axes (list of ints, Optional):
The axes that is variable in Phi (e.g., the sentence length axis).
We will reduce these axes by mean along them.
Returns:
torch.FloatTensor: The regularization term calculated
"""
sample_num = len(sampled_x)
sample_s = []
for n in range(sample_num):
x = sampled_x[n]
if device is not None:
x = x.to(device)
s = Phi(x)
if reduced_axes is not None:
for axis in reduced_axes:
assert axis < len(s.shape)
s = s.mean(dim=axis, keepdim=True)
sample_s.append(s.tolist())
sample_s = np.array(sample_s)
return np.std(sample_s, axis=0)
class Interpreter(nn.Module):
""" Interpreter for interpreting one instance. The method is from
paper `Towards a Deep and Unified Understanding of Deep Neural
Models in NLP <http://proceedings.mlr.press/v97/guan19a/guan19a.pdf>`_
It will minimize the loss in Eqn.(7):
$L(sigma) = (||Phi(embed + epsilon) - Phi(embed)||_2^2)
// (regularization^2) - rate * log(sigma)$
In our implementation, we use reparameterization trick to represent
epsilon ~ N(0, sigma^2 I), i.e. epsilon = scale * ratio * noise.
Where noise ~ N(0, 1), scale is a hyper-parameter that controls the
maximum value of sigma^2, and ratio in (0, 1) is the learnable parameter.
"""
def __init__(self, x, Phi, scale=0.5, rate=0.1, regularization=None, words=None):
""" Initialize an interpreter class.
Args:
x (torch.FloatTensor): Of shape ``[length, dimension]``.
The $x$ we studied. i.e. The input word embeddings.
Phi (function):
The $Phi$ we studied. A function whose input is x (the first
parameter) and returns a hidden state (of type
``torch.FloatTensor``, of any shape)
scale (float):
The maximum size of sigma. A hyper-parameter in
reparameterization trick. The recommended value is
10 * Std[word_embedding_weight], where word_embedding_weight
is the word embedding weight in the model interpreted. Larger
scale will give more salient result, Default: 0.5.
rate (float):
A hyper-parameter that balance the MLE Loss and Maximum
Entropy Loss. Larger rate will result in larger information
loss. Default: 0.1.
regularization (Torch.FloatTensor or np.ndarray):
The regularization term, should be of the same shape as
(or broadcastable to) the output of Phi. If None is given,
method will use the output to regularize itself.
Default: None.
words (List[Str]):
The input sentence, used for visualizing. If None is given,
method will not show the words.
"""
super(Interpreter, self).__init__()
self.s = x.size(0)
self.d = x.size(1)
self.ratio = nn.Parameter(torch.randn(self.s, 1), requires_grad=True)
self.scale = scale
self.rate = rate
self.x = x
self.Phi = Phi
self.regular = regularization
if self.regular is not None:
self.regular = nn.Parameter(torch.tensor(self.regular).to(x), requires_grad=False)
self.words = words
if self.words is not None:
assert self.s == len(
words
), "the length of x should be of the same with the lengh of words"
def forward(self):
""" Calculate loss:
$L(sigma) = (||Phi(embed + epsilon) - Phi(embed)||_2^2)
// (regularization^2) - rate * log(sigma)$
Returns:
torch.FloatTensor: a scalar, the target loss.
"""
ratios = torch.sigmoid(self.ratio) # S * 1
x = self.x + 0.0 # S * D
x_tilde = x + ratios * torch.randn(self.s, self.d).to(x.device) * self.scale # S * D
s = self.Phi(x) # D or S * D
s_tilde = self.Phi(x_tilde)
loss = (s_tilde - s) ** 2
if self.regular is not None:
loss = torch.mean(loss / self.regular ** 2)
else:
loss = torch.mean(loss) / torch.mean(s ** 2)
return loss - torch.mean(torch.log(ratios)) * self.rate
def optimize(self, iteration=5000, lr=0.01, show_progress=False):
""" Optimize the loss function
Args:
iteration (int): Total optimizing iteration
lr (float): Learning rate
show_progress (bool): Whether to show the learn progress
"""
minLoss = None
state_dict = None
optimizer = optim.Adam(self.parameters(), lr=lr)
self.train()
func = (lambda x: x) if not show_progress else tqdm
for _ in func(range(iteration)):
optimizer.zero_grad()
loss = self()
loss.backward()
optimizer.step()
if minLoss is None or minLoss > loss:
state_dict = {k: self.state_dict()[k] + 0.0 for k in self.state_dict().keys()}
minLoss = loss
self.eval()
self.load_state_dict(state_dict)
def get_sigma(self):
""" Calculate and return the sigma
Returns:
np.ndarray: of shape ``[seqLen]``, the ``sigma``.
"""
ratios = torch.sigmoid(self.ratio) # S * 1
return ratios.detach().cpu().numpy()[:, 0] * self.scale
def visualize(self):
""" Visualize the information loss of every word.
"""
sigma_ = self.get_sigma()
_, ax = plt.subplots()
im = ax.imshow([sigma_], cmap="GnBu_r")
ax.set_xticks(range(self.s))
ax.set_xticklabels(self.words)
ax.set_yticks([0])
ax.set_yticklabels([""])
plt.colorbar(im, orientation="horizontal")
plt.tight_layout()
plt.show()