forked from CT83/handwriting-synthesis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdrawing.py
216 lines (172 loc) · 5.85 KB
/
drawing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from __future__ import print_function
from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
from scipy.signal import savgol_filter
from scipy.interpolate import interp1d
alphabet = [
'\x00', ' ', '!', '"', '#', "'", '(', ')', ',', '-', '.',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';',
'?', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K',
'L', 'M', 'N', 'O', 'P', 'R', 'S', 'T', 'U', 'V', 'W', 'Y',
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l',
'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x',
'y', 'z'
]
alphabet_ord = list(map(ord, alphabet))
alpha_to_num = defaultdict(int, list(map(reversed, enumerate(alphabet))))
num_to_alpha = dict(enumerate(alphabet_ord))
MAX_STROKE_LEN = 1200
MAX_CHAR_LEN = 75
def align(coords):
"""
corrects for global slant/offset in handwriting strokes
"""
coords = np.copy(coords)
X, Y = coords[:, 0].reshape(-1, 1), coords[:, 1].reshape(-1, 1)
X = np.concatenate([np.ones([X.shape[0], 1]), X], axis=1)
offset, slope = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(Y).squeeze()
theta = np.arctan(slope)
rotation_matrix = np.array(
[[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]]
)
coords[:, :2] = np.dot(coords[:, :2], rotation_matrix) - offset
return coords
def skew(coords, degrees):
"""
skews strokes by given degrees
"""
coords = np.copy(coords)
theta = degrees * np.pi/180
A = np.array([[np.cos(-theta), 0], [np.sin(-theta), 1]])
coords[:, :2] = np.dot(coords[:, :2], A)
return coords
def stretch(coords, x_factor, y_factor):
"""
stretches strokes along x and y axis
"""
coords = np.copy(coords)
coords[:, :2] *= np.array([x_factor, y_factor])
return coords
def add_noise(coords, scale):
"""
adds gaussian noise to strokes
"""
coords = np.copy(coords)
coords[1:, :2] += np.random.normal(loc=0.0, scale=scale, size=coords[1:, :2].shape)
return coords
def encode_ascii(ascii_string):
"""
encodes ascii string to array of ints
"""
return np.array(list(map(lambda x: alpha_to_num[x], ascii_string)) + [0])
def denoise(coords):
"""
smoothing filter to mitigate some artifacts of the data collection
"""
coords = np.split(coords, np.where(coords[:, 2] == 1)[0] + 1, axis=0)
new_coords = []
for stroke in coords:
if len(stroke) != 0:
x_new = savgol_filter(stroke[:, 0], 7, 3, mode='nearest')
y_new = savgol_filter(stroke[:, 1], 7, 3, mode='nearest')
xy_coords = np.hstack([x_new.reshape(-1, 1), y_new.reshape(-1, 1)])
stroke = np.concatenate([xy_coords, stroke[:, 2].reshape(-1, 1)], axis=1)
new_coords.append(stroke)
coords = np.vstack(new_coords)
return coords
def interpolate(coords, factor=2):
"""
interpolates strokes using cubic spline
"""
coords = np.split(coords, np.where(coords[:, 2] == 1)[0] + 1, axis=0)
new_coords = []
for stroke in coords:
if len(stroke) == 0:
continue
xy_coords = stroke[:, :2]
if len(stroke) > 3:
f_x = interp1d(np.arange(len(stroke)), stroke[:, 0], kind='cubic')
f_y = interp1d(np.arange(len(stroke)), stroke[:, 1], kind='cubic')
xx = np.linspace(0, len(stroke) - 1, factor*(len(stroke)))
yy = np.linspace(0, len(stroke) - 1, factor*(len(stroke)))
x_new = f_x(xx)
y_new = f_y(yy)
xy_coords = np.hstack([x_new.reshape(-1, 1), y_new.reshape(-1, 1)])
stroke_eos = np.zeros([len(xy_coords), 1])
stroke_eos[-1] = 1.0
stroke = np.concatenate([xy_coords, stroke_eos], axis=1)
new_coords.append(stroke)
coords = np.vstack(new_coords)
return coords
def normalize(offsets):
"""
normalizes strokes to median unit norm
"""
offsets = np.copy(offsets)
offsets[:, :2] /= np.median(np.linalg.norm(offsets[:, :2], axis=1))
return offsets
def coords_to_offsets(coords):
"""
convert from coordinates to offsets
"""
offsets = np.concatenate([coords[1:, :2] - coords[:-1, :2], coords[1:, 2:3]], axis=1)
offsets = np.concatenate([np.array([[0, 0, 1]]), offsets], axis=0)
return offsets
def offsets_to_coords(offsets):
"""
convert from offsets to coordinates
"""
return np.concatenate([np.cumsum(offsets[:, :2], axis=0), offsets[:, 2:3]], axis=1)
def draw(
offsets,
ascii_seq=None,
align_strokes=True,
denoise_strokes=True,
interpolation_factor=None,
save_file=None
):
strokes = offsets_to_coords(offsets)
if denoise_strokes:
strokes = denoise(strokes)
if interpolation_factor is not None:
strokes = interpolate(strokes, factor=interpolation_factor)
if align_strokes:
strokes[:, :2] = align(strokes[:, :2])
fig, ax = plt.subplots(figsize=(12, 3))
stroke = []
for x, y, eos in strokes:
stroke.append((x, y))
if eos == 1:
coords = zip(*stroke)
ax.plot(coords[0], coords[1], 'k')
stroke = []
if stroke:
coords = zip(*stroke)
ax.plot(coords[0], coords[1], 'k')
stroke = []
ax.set_xlim(-50, 600)
ax.set_ylim(-40, 40)
ax.set_aspect('equal')
plt.tick_params(
axis='both',
left='off',
top='off',
right='off',
bottom='off',
labelleft='off',
labeltop='off',
labelright='off',
labelbottom='off'
)
if ascii_seq is not None:
if not isinstance(ascii_seq, str):
ascii_seq = ''.join(list(map(chr, ascii_seq)))
plt.title(ascii_seq)
if save_file is not None:
plt.savefig(save_file)
print('saved to {}'.format(save_file))
else:
plt.show()
plt.close('all')