-
Notifications
You must be signed in to change notification settings - Fork 1
/
BL_ZG_CA-train.py
145 lines (107 loc) · 4.47 KB
/
BL_ZG_CA-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse
import os
import yaml
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
import torchvision.datasets as Datasets
import torchvision.transforms as transforms
from easydict import EasyDict
from tensorboardX import SummaryWriter
from model.ResNet import resnet32
from tricks.training_refinements.LR import CosineAnnealing
from tricks.largebatch_training.ZeroGamma import Zerogamma
from GHM.GHMC_Loss import GHMC_Loss
from utils.scheduler import get_scheduler
from utils.calc_acc import PerClassAccuracy
GPU_ID = '4'
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID
parser = argparse.ArgumentParser(description='zero gamma with resnet32 architecture')
parser.add_argument('--config', default='experiments/cifar10-bl_zg_ca/config.yaml')
def train(model, epoch_idx, criterion, lr_scheduler, optimizer, trainloader):
model.train()
for batch_idx, data in enumerate(trainloader):
images, labels = data
images = images.cuda()
labels = labels.cuda()
optimizer.zero_grad()
out = model(images)
pred = out.data.max(1)[1]
PCA.update(labels, pred)
loss = criterion(out, labels)
loss.backward()
optimizer.step()
lr_scheduler.step()
Writer.add_scalar('train loss', loss.item(), epoch_idx * len(trainloader) + batch_idx)
print('TRAIN:{}/{} EPOCHs, {}/{} BATCHs, LOSS:{}'.format(epoch_idx, config.max_iter, batch_idx,
len(trainloader), loss.item()))
_, _, mAP = PCA.calc()
Writer.add_scalar('train mAP', mAP, epoch_idx)
PCA.reset()
def val(model, epoch_idx, criterion, testloader):
model.eval()
for batch_idx, data in enumerate(testloader):
images, labels = data
images, labels = images.cuda(), labels.cuda()
with torch.no_grad():
out = model(images)
pred = out.data.max(1)[1]
PCA.update(labels, pred)
loss = criterion(out, labels)
Writer.add_scalar('val loss', loss.item(), epoch_idx * len(testloader) + batch_idx)
print('VAL:{}/{} EPOCHs, {}/{} BATCHs'.format(epoch_idx, config.max_iter, batch_idx, len(testloader)))
_, AVG_acc, mAP = PCA.calc()
Writer.add_scalar('avg acc', AVG_acc, epoch_idx)
Writer.add_scalar('val mAP', mAP, epoch_idx)
PCA.reset()
def main():
global args, config
args = parser.parse_args()
with open(args.config) as rPtr:
config = EasyDict(yaml.load(rPtr))
config.save_path = os.path.dirname(args.config)
# Random seed
torch.manual_seed(config.seed)
torch.cuda.manual_seed(config.seed)
np.random.seed(config.seed)
random.seed(config.seed)
# Datasets
train_transform = transforms.Compose([
transforms.RandomCrop((32, 32), padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262))
])
val_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262))
])
trainset = Datasets.CIFAR10(root='data', train=True, download=True, transform=train_transform)
trainloader = Data.DataLoader(trainset, batch_size=config.batch_size, shuffle=True, num_workers=config.workers)
testset = Datasets.CIFAR10(root='data', train=False, download=True, transform=val_transform)
testloader = Data.DataLoader(testset, batch_size=config.batch_size, shuffle=False, num_workers=config.workers)
# Model
model = resnet32()
if config.zerogamma:
print('all BN layers weights that sit at the end of a residual block are set 0.0')
Zerogamma(model, last_bn_name='bn2')
model = model.cuda()
# Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=config.lr_scheduler.base_lr, momentum=config.momentum,
weight_decay=config.weight_decay)
# LR scheduler
# lr_scheduler = get_scheduler(optimizer, config.lr_scheduler)
lr_scheduler = CosineAnnealing(optimizer, config.max_iter * len(trainloader))
global PCA, Writer
PCA = PerClassAccuracy(num_classes=config.num_classes)
Writer = SummaryWriter(config.save_path + '/events')
for iter_idx in range(config.max_iter):
train(model, iter_idx, criterion, lr_scheduler, optimizer, trainloader)
val(model, iter_idx, criterion, testloader)
Writer.close()
if __name__ == '__main__':
main()