forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom.py
169 lines (132 loc) · 6.54 KB
/
random.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import contextlib
from typing import Generator
import warnings
from torch._C import default_generator
import torch
def set_rng_state(new_state: torch.Tensor) -> None:
r"""Sets the random number generator state.
.. note: This function only works for CPU. For CUDA, please use
torch.manual_seed(seed), which works for both CPU and CUDA.
Args:
new_state (torch.ByteTensor): The desired state
"""
default_generator.set_state(new_state)
def get_rng_state() -> torch.Tensor:
r"""Returns the random number generator state as a `torch.ByteTensor`."""
return default_generator.get_state()
def manual_seed(seed) -> torch._C.Generator:
r"""Sets the seed for generating random numbers. Returns a
`torch.Generator` object.
Args:
seed (int): The desired seed. Value must be within the inclusive range
`[-0x8000_0000_0000_0000, 0xffff_ffff_ffff_ffff]`. Otherwise, a RuntimeError
is raised. Negative inputs are remapped to positive values with the formula
`0xffff_ffff_ffff_ffff + seed`.
"""
seed = int(seed)
import torch.cuda
if not torch.cuda._is_in_bad_fork():
torch.cuda.manual_seed_all(seed)
import torch.mps
if not torch.mps._is_in_bad_fork():
torch.mps.manual_seed(seed)
_seed_custom_device(seed)
return default_generator.manual_seed(seed)
def seed() -> int:
r"""Sets the seed for generating random numbers to a non-deterministic
random number. Returns a 64 bit number used to seed the RNG.
"""
seed = default_generator.seed()
import torch.cuda
if not torch.cuda._is_in_bad_fork():
torch.cuda.manual_seed_all(seed)
import torch.mps
if not torch.mps._is_in_bad_fork():
torch.mps.manual_seed(seed)
_seed_custom_device(seed)
return seed
def _seed_custom_device(seed) -> None:
r"""Sets the seed to generate random numbers for custom device.
Args:
seed (int): The desired seed.
See [Note: support the custom device with privateuse1]
"""
seed = int(seed)
custom_backend_name = torch._C._get_privateuse1_backend_name()
if hasattr(torch, custom_backend_name):
custom_device_mod = getattr(torch, custom_backend_name)
_bad_fork_name = "_is_in_bad_fork"
_seed_all_name = "manual_seed_all"
if hasattr(custom_device_mod, _bad_fork_name) and hasattr(custom_device_mod, _seed_all_name):
if not getattr(custom_device_mod, _bad_fork_name)():
getattr(custom_device_mod, _seed_all_name)(seed)
else:
message = f"Set seed for `{custom_backend_name}` device does not take effect, please add API's "
message += f"`{_bad_fork_name}` and `{_seed_all_name}` to `{custom_backend_name}` device module."
warnings.warn(message, UserWarning, stacklevel=3)
def initial_seed() -> int:
r"""Returns the initial seed for generating random numbers as a
Python `long`.
"""
return default_generator.initial_seed()
_fork_rng_warned_already = False
@contextlib.contextmanager
def fork_rng(devices=None, enabled=True, _caller="fork_rng", _devices_kw="devices", device_type="cuda") -> Generator:
"""
Forks the RNG, so that when you return, the RNG is reset
to the state that it was previously in.
Args:
devices (iterable of Device IDs): devices for which to fork
the RNG. CPU RNG state is always forked. By default, :meth:`fork_rng` operates
on all devices, but will emit a warning if your machine has a lot
of devices, since this function will run very slowly in that case.
If you explicitly specify devices, this warning will be suppressed
enabled (bool): if ``False``, the RNG is not forked. This is a convenience
argument for easily disabling the context manager without having
to delete it and unindent your Python code under it.
deivce(str): device type str, default is `cuda`. As for custom device,
see details in [Note: support the custom device with privateuse1]
"""
device_type = torch.device(device_type).type
device_mod = getattr(torch, device_type, None)
if device_mod is None:
raise RuntimeError(f"torch has no module of `{device_type}`, you should register " +
"a module by `torch._register_device_module`.")
global _fork_rng_warned_already
# Internal arguments:
# _caller: the function which called fork_rng, which the user used
# _devices_kw: the devices keyword of _caller
if not enabled:
yield
return
if devices is None:
num_devices = device_mod.device_count()
if num_devices > 1 and not _fork_rng_warned_already:
message = (f"{device_type.upper()} reports that you have {num_devices} available devices, and "
f"you have used {_caller} without explicitly specifying which devices are being used. "
f"For safety, we initialize *every* {device_type.upper()} device by default, which can "
"be quite slow if you have a lot of {device_type.upper()}s. If you know that you are only"
" making use of a few {device_type.upper()} devices, set the environment variable "
f"{device_type.upper()}_VISIBLE_DEVICES or the '{_devices_kw}' keyword argument of {_caller} "
"with the set of devices you are actually using. For example, if you are using CPU only, "
"set device.upper()_VISIBLE_DEVICES= or devices=[]; if you are using device 0 only, "
f"set {device_type.upper()}_VISIBLE_DEVICES=0 or devices=[0]. To initialize all devices "
"and suppress this warning, set the '{_devices_kw}' keyword argument to "
"`range(torch.{device_type}.device_count())`.")
warnings.warn(message)
_fork_rng_warned_already = True
devices = list(range(num_devices))
else:
# Protect against user passing us a generator; we need to traverse this
# multiple times but a generator will be exhausted upon first traversal
devices = list(devices)
cpu_rng_state = torch.get_rng_state()
device_rng_states = []
for device in devices:
device_rng_states.append(device_mod.get_rng_state(device))
try:
yield
finally:
torch.set_rng_state(cpu_rng_state)
for device, device_rng_state in zip(devices, device_rng_states):
device_mod.set_rng_state(device_rng_state, device)