forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymbolic_shape_registry.cpp
450 lines (402 loc) · 15.4 KB
/
symbolic_shape_registry.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#include <c10/util/Exception.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/ir/ir_views.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/runtime/graph_iterator.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/jit/runtime/serialized_shape_function_registry.h>
#include <torch/csrc/jit/runtime/symbolic_shape_registry.h>
#include <torch/csrc/jit/runtime/symbolic_shape_registry_util.h>
#include <torch/csrc/jit/serialization/import_source.h>
#include <unordered_map>
namespace torch {
namespace jit {
namespace {
std::mutex lock;
// split here to satisfy MSVC++
// https://docs.microsoft.com/en-us/cpp/error-messages/compiler-errors-1/compiler-error-c2026?view=msvc-170
const std::string _xnnpack_shape_compute_functions =
#ifdef USE_XNNPACK
R"(def prepacked_conv2d_clamp_run(input: List[int], conv2dOpContext: Any):
assert isinstance(conv2dOpContext, __torch__.torch.classes.xnnpack.Conv2dOpContext)
(weight, bias, stride, padding, dilation, groups) = unchecked_cast(
Tuple[List[int], Optional[List[int]], List[int], List[int], List[int], int],
ops.prepacked.unpack_prepacked_sizes_conv2d(conv2dOpContext),
)
return conv2d(input, weight, bias, stride, padding, dilation, groups)
def prepacked_linear_clamp_run(input: List[int], linearOpContext: Any):
assert isinstance(linearOpContext, __torch__.torch.classes.xnnpack.LinearOpContext)
(weight, bias) = unchecked_cast(
Tuple[List[int], Optional[List[int]]],
ops.prepacked.unpack_prepacked_sizes_linear(linearOpContext),
)
return linear(input, weight, bias)
)"
#else
""
#endif
;
// mapping function schema to shape compute graphs allows multiple functions to
// share the same shape compute graph, which is memory efficient and also will
// help speed up shape analysis by caching the result of running consecutive ops
// for a particular set of inputs with the same graph, e.g. running a series
// of pointwise ops
// we need a map from schema to shape compute graph, because the aten schema
// is not recoverable from the shape compute graph, since the shape compute
// graph replaces Tensor inputs with List[int] and there are operators like Conv
// which natively have List[int] inputs
// TODO: consider storing shape compute graph directly on operator,
// and merge into native_functions.yaml
// wrapped in function so that operators get registered before map is
// initialized
// Conditionally defined ops not yet supported in python serialized
// operators
static const OperatorMap<std::string>& conditionally_defined_ops() {
// clang-format off
static const OperatorMap<std::string> schema_to_function_graph{
#ifdef USE_XNNPACK
{"prepacked::conv2d_clamp_run(Tensor X, __torch__.torch.classes.xnnpack.Conv2dOpContext W_prepack) -> Tensor Y", "prepacked_conv2d_clamp_run"},
{"prepacked::linear_clamp_run(Tensor X, __torch__.torch.classes.xnnpack.LinearOpContext W_prepack) -> Tensor Y", "prepacked_linear_clamp_run"},
#endif
};
// clang-format on
return schema_to_function_graph;
}
std::unordered_map<const FunctionSchema*, std::shared_ptr<Graph>>
cached_schema_to_graph;
std::unordered_map<const FunctionSchema*, BoundedShapeGraphs>
cached_bounded_schema_to_graph;
// CompilationUnit that holds all these Functions and keeps them alive.
auto compilation_unit = std::make_shared<CompilationUnit>();
const at::optional<const FunctionSchema*> getInplaceVariant(
const FunctionSchema& base_schema) {
auto& inplace_variants =
getAllOperatorsFor(c10::Symbol::fromQualString(base_schema.name() + "_"));
for (const auto& variant : inplace_variants) {
// Need to check that all args are the same except for the first, which
// is almost the same except for the Alias info
const FunctionSchema* schema = &variant->schema();
if (!schema->isSubtypeOf(base_schema, false)) {
continue;
}
Argument self_arg = schema->arguments()[0];
if (!self_arg.alias_info()->isWrite()) {
continue;
}
Argument ret_arg = schema->returns()[0];
if (!ret_arg.alias_info()->isWrite()) {
continue;
}
return schema;
}
return at::nullopt;
}
TypePtr mapTensorToListOfInts(TypePtr type) {
if (type->cast<TensorType>()) {
return ListType::ofInts();
}
at::ArrayRef<TypePtr> contained = type->containedTypes();
if (contained.empty()) {
return type;
}
return type->withContained(
fmap(type->containedTypes(), mapTensorToListOfInts));
}
void checkForWhileLoop(
const FunctionSchema* schema,
std::shared_ptr<Graph> graph) {
DepthFirstGraphNodeIterator graph_it(graph);
for (auto* node = graph_it.next(); node != nullptr; node = graph_it.next()) {
if (node->kind() != prim::Loop) {
continue;
}
LoopView loop(node);
if (loop.loopType() != LoopView::For) {
TORCH_WARN(
"While loops are not yet implemented in unrolling which may make this shape function difficult to partially evaluate: ",
*node,
" for schema ",
*schema);
}
}
}
void checkInputReturnedAsOutput(
const FunctionSchema* schema,
const std::shared_ptr<Graph>& graph) {
// Could use alias db here as well but would have to warn because it's
// imprecise
for (size_t i : c10::irange(graph->inputs().size())) {
Value* input = graph->inputs().at(i);
for (size_t j : c10::irange(graph->outputs().size())) {
Value* output = graph->outputs().at(j);
TORCH_CHECK(
input != output,
"For schema: ",
*schema,
" input index ",
i,
" is returned as output index ",
j,
". Shape functions must return new unaliased lists");
}
}
}
void checkInputAndOutputTypes(
const FunctionSchema* schema,
const std::shared_ptr<Graph>& graph) {
// allow extra unused arguments to map multiple functions to e.g. unary
TORCH_CHECK(
graph->inputs().size() <= schema->arguments().size(),
"Shape function must have fewer arguments than schema. Got ",
graph->inputs().size(),
" graph arguments and ",
schema->arguments().size(),
" schema arguments of schema: ",
*schema);
for (auto i : c10::irange(graph->inputs().size())) {
auto inp_type = schema->arguments().at(i).type();
auto mapped_type = mapTensorToListOfInts(inp_type);
auto graph_type = graph->inputs().at(i)->type();
TORCH_INTERNAL_ASSERT(
mapped_type->isSubtypeOf(graph->inputs().at(i)->type()),
"For schema type: ",
inp_type->str(),
" Expected supertype of ",
mapped_type->str(),
" but got graph_type ",
graph_type->str(),
" at index ",
i,
" of schema: ",
*schema);
}
TORCH_CHECK(
graph->outputs().size() == schema->returns().size(),
"Shape function equal number of outputs as schema. Got ",
graph->outputs().size(),
" graph outputs and ",
schema->returns().size(),
" schema returns of schema: ",
*schema);
for (auto i : c10::irange(schema->returns().size())) {
auto out_type = schema->returns().at(i).type();
auto mapped_type = mapTensorToListOfInts(out_type);
auto graph_type = graph->outputs().at(i)->type();
TORCH_INTERNAL_ASSERT(
mapped_type->isSubtypeOf(graph->outputs().at(i)->type()),
"For schema type: ",
out_type->str(),
" Expected supertype of ",
mapped_type->str(),
" but got graph_type ",
graph_type->str(),
" at output index ",
i,
" of schema: ",
*schema);
}
}
void transformShapeFunction(
const FunctionSchema* schema_string,
std::shared_ptr<Graph> graph) {
Inline(*graph);
// ATEN operators can return multiple unboxed values, this in contrast to
// functions defined in TorchScript or User-Registered Operators
// Which must use a Tuple
// Here, modify the shape graph of aten operators with multiple outputs
// so that they correspond to each other
if (schema_string->returns().size() > 1) {
TORCH_INTERNAL_ASSERT(
graph->outputs().size() == 1 &&
graph->outputs().at(0)->type()->cast<TupleType>());
auto tuple_node = graph->outputs().at(0)->node();
WithInsertPoint guard(graph->return_node());
auto tuple_unpack_values = createTupleUnpack(tuple_node->output());
graph->eraseOutput(0);
for (Value* v : tuple_unpack_values) {
graph->registerOutput(v);
}
GRAPH_DUMP("After Output Tuple Unpacking", graph);
}
}
std::shared_ptr<Graph> genShapeComputeFn(
const FunctionSchema* schema_string,
const std::string& shape_compute_function_name,
std::unordered_map<std::string, std::shared_ptr<Graph>>& reused_functions,
const CompilationUnit& module) {
std::shared_ptr<Graph> graph;
GRAPH_DEBUG(
"Registering schema: ",
*schema_string,
" with shape compute func: ",
shape_compute_function_name);
if (reused_functions.count(shape_compute_function_name)) {
GRAPH_DEBUG("Registering reused schema");
graph = reused_functions[shape_compute_function_name];
} else {
Function& shape_compute_function =
module.get_function(shape_compute_function_name);
graph = toGraphFunction(shape_compute_function).graph();
transformShapeFunction(schema_string, graph);
// NB: we lint the shape functions registered in source
// in a test file
// LintShapeComputeGraph(schema_string, graph);
reused_functions[shape_compute_function_name] = graph;
}
// allow extra unused arguments to map multiple functions to e.g. unary
TORCH_INTERNAL_ASSERT(
graph->inputs().size() <= schema_string->arguments().size());
return graph;
}
void registerSchema(
const FunctionSchema* schema_string,
const std::string& shape_compute_function_name,
std::unordered_map<std::string, std::shared_ptr<Graph>>& reused_functions,
const CompilationUnit& module) {
auto graph = genShapeComputeFn(
schema_string, shape_compute_function_name, reused_functions, module);
cached_schema_to_graph[schema_string] = graph;
}
void registerBoundedSchema(
const FunctionSchema* schema_string,
const std::string& lower_bound_function_name,
const std::string& upper_bound_function_name,
std::unordered_map<std::string, std::shared_ptr<Graph>>& reused_functions,
const CompilationUnit& module) {
auto lower_graph = genShapeComputeFn(
schema_string, lower_bound_function_name, reused_functions, module);
auto upper_graph = genShapeComputeFn(
schema_string, upper_bound_function_name, reused_functions, module);
cached_bounded_schema_to_graph[schema_string] = {lower_graph, upper_graph};
}
void loadModule(const CompilationUnit& module) {
std::unordered_map<std::string, std::shared_ptr<Graph>> reused_functions;
std::vector<std::pair<std::shared_ptr<Operator>, std::string>>
operator_pairs = conditionally_defined_ops().getAllKeysAndValues();
auto te_ops = get_tensorexpr_elementwise_set().getAllKeysAndValues();
operator_pairs.insert(operator_pairs.end(), te_ops.begin(), te_ops.end());
auto more_mappings = GetShapeFunctionMappings().getAllKeysAndValues();
operator_pairs.insert(
operator_pairs.end(), more_mappings.begin(), more_mappings.end());
for (const auto& pair : operator_pairs) {
const FunctionSchema* schema_string = &pair.first->schema();
const std::string& shape_compute_function_name = pair.second;
registerSchema(
schema_string, shape_compute_function_name, reused_functions, module);
// Register the inplace variant if any for functions with common shape forms
if (shape_compute_function_name == "unary") {
auto inplace_schema = getInplaceVariant(*schema_string);
if (inplace_schema.has_value()) {
registerSchema(
inplace_schema.value(), "unary", reused_functions, module);
}
}
if (shape_compute_function_name == "broadcast") {
auto inplace_schema = getInplaceVariant(*schema_string);
if (inplace_schema.has_value()) {
registerSchema(
inplace_schema.value(),
"broadcast_inplace",
reused_functions,
module);
}
}
}
// Now register the bounded schemas
for (const auto& pair : GetBoundedShapeMappings().getAllKeysAndValues()) {
const FunctionSchema* schema_string = &pair.first->schema();
const std::string& lower_bound_function_name = pair.second.first;
const std::string& upper_bound_function_name = pair.second.second;
registerBoundedSchema(
schema_string,
lower_bound_function_name,
upper_bound_function_name,
reused_functions,
module);
}
}
void loadFunctions() {
try {
auto shape_compute_functions =
GetSerializedShapeFunctions() + _xnnpack_shape_compute_functions;
auto src = std::make_shared<Source>(shape_compute_functions);
std::stringstream ss;
std::vector<at::IValue> constantTable;
auto resolver = std::make_shared<SourceImporterImpl>(
compilation_unit,
&constantTable,
[&](const std::string& name) -> std::shared_ptr<Source> { return src; },
1);
compilation_unit->define(
c10::nullopt, shape_compute_functions, resolver, nullptr);
loadModule(*compilation_unit);
} catch (...) {
// Reset the cache and compilation unit so that we don't get weird errors
// in later tests when one of the shape functions is invalid.
compilation_unit = std::make_shared<CompilationUnit>();
cached_schema_to_graph.clear();
throw;
}
}
} // anonymous namespace
c10::optional<std::shared_ptr<Graph>> shapeComputeGraphForSchema(
const FunctionSchema& schema) {
std::lock_guard<std::mutex> guard(lock);
if (cached_schema_to_graph.empty()) {
loadFunctions();
}
GRAPH_DEBUG("Trying to find schema: ", schema);
auto cache_it = cached_schema_to_graph.find(&schema);
if (cache_it != cached_schema_to_graph.end()) {
return cache_it->second;
}
GRAPH_DEBUG("Could not find schema: ", schema);
return c10::nullopt;
}
TORCH_API c10::optional<BoundedShapeGraphs> boundedGraphsForSchema(
const FunctionSchema& schema) {
std::lock_guard<std::mutex> guard(lock);
if (cached_bounded_schema_to_graph.empty()) {
loadFunctions();
}
GRAPH_DEBUG("Trying to find schema in bounded graphs: ", schema);
auto cache_it = cached_bounded_schema_to_graph.find(&schema);
if (cache_it != cached_bounded_schema_to_graph.end()) {
return cache_it->second;
}
return c10::nullopt;
}
void RegisterShapeComputeGraphForSchema(
const FunctionSchema& schema,
std::shared_ptr<Graph> g) {
std::lock_guard<std::mutex> guard(lock);
if (cached_schema_to_graph.empty()) {
loadFunctions();
}
transformShapeFunction(&schema, g);
LintShapeComputeGraph(&schema, g);
cached_schema_to_graph[&schema] = g;
}
std::vector<const FunctionSchema*> RegisteredShapeComputeSchemas() {
std::lock_guard<std::mutex> guard(lock);
if (cached_schema_to_graph.empty()) {
loadFunctions();
}
std::vector<const FunctionSchema*> schemas;
schemas.reserve(cached_schema_to_graph.size());
for (const auto& pair : cached_schema_to_graph) {
schemas.push_back(pair.first);
}
return schemas;
}
void LintShapeComputeGraph(
const FunctionSchema* schema,
const std::shared_ptr<Graph>& graph) {
checkInputAndOutputTypes(schema, graph);
checkForWhileLoop(schema, graph);
checkInputReturnedAsOutput(schema, graph);
// TODO: other checks ? list ops which we don't symbolically optimize, etc ?
}
} // namespace jit
} // namespace torch