forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_ops.py
792 lines (655 loc) · 31.2 KB
/
_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
import contextlib
import ctypes
import inspect
import sys
import types
from typing import Any, Callable, Dict, List, Type, Union
import torch._C
from torch import _utils_internal
from torch._functorch.pyfunctorch import dispatch_functorch
# Query `hasattr` only once.
_SET_GLOBAL_FLAGS = hasattr(sys, "getdlopenflags") and hasattr(sys, "setdlopenflags")
@contextlib.contextmanager
def dl_open_guard():
"""
Context manager to set the RTLD_GLOBAL dynamic linker flag while we open a
shared library to load custom operators.
"""
if not _SET_GLOBAL_FLAGS:
yield
return
old_flags = sys.getdlopenflags()
sys.setdlopenflags(old_flags | ctypes.RTLD_GLOBAL)
try:
yield
finally:
sys.setdlopenflags(old_flags)
class OperatorBase:
"""
Base class for OpOverload (which represents C++ ATen operators) and HigherOrderOperator
(which represents Python-only operators that are unrepresentable in TorchScript).
"""
def __init__(self):
# The dispatch cache precomputes a mapping of dispatch key that the
# dispatcher wants to dispatch to, to an actual implementation of the
# dispatch key. Confusingly, the actual implementation could *also* be a
# dispatch key, but in this case, this refers to the C++ kernel that
# was registered to some dispatch key. Aliases are permitted in the
# latter but not the former; for example, you might lookup the
# entry for AutogradCPU, and this maps you to the Autograd key for
# the generic autograd kernel that works for all devices. Since this
# is the Python dispatcher, you can also put an arbitrary Python
# callable to call instead. This handler gets precisely the
# args/kwargs that the operator was __call__'ed with.
# NB: This name is hard-coded in torch/csrc/autograd/python_variable.cpp
# for use with OpOverload; cache lookup is done entirely from C++
# for speed.
# TODO: The cache is NOT currently used by HigherOrderOperator, but it should!
self._dispatch_cache: Dict[
torch._C.DispatchKey, Union[torch._C.DispatchKey, Callable[..., Any]]
] = {}
# This table allows you to override the behavior of a particular
# dispatch key to call a custom Python function, rather than the
# ordinary C++ configured behavior. This is the raison d'etre of
# Python dispatcher: to let you program the dispatcher from Python
# in case you need something unusual, and don't want to clobber
# the existing registrations using the Python operator registration
# API.
self.py_kernels: Dict[torch._C.DispatchKey, Callable[..., Any]] = {}
from torch.utils._python_dispatch import TorchDispatchMode
# This table allows you to override the behavior of a particular
# operator for a particular TorchDispatchMode. In practice,
# we are using this mostly for ProxyTensorMode. Modes can be
# thought of as an open world extension of dispatch keys, so it
# makes sense that you should be able to register them, the same
# way you can register dispatch keys.
self.python_key_mode_table: Dict[
Type[TorchDispatchMode], Callable[..., Any]
] = {}
# This table allows you to override the behavior of functorch
# transformations. NB: this currently only does something for
# HigherOrderOperator
self.functorch_table = {}
def __call__(self, *args, **kwargs):
raise NotImplementedError()
def has_kernel_for_dispatch_key(self, k):
return k in self.py_kernels
def has_kernel_for_any_dispatch_key(self, ks):
for k in self.py_kernels:
if not torch._C._dispatch_is_alias_key(k) and ks.has(k):
return True
return False
def py_impl(self, k):
def inner(fn):
if inspect.isclass(k) and issubclass(
k, torch.utils._python_dispatch.TorchDispatchMode
):
assert k not in self.python_key_mode_table
# TODO(voz): Should we replace setting torch._C.DispatchKey.Python entirely with setting mode keys?
self.python_key_mode_table[k] = fn
self._dispatch_cache.clear()
return fn
if isinstance(k, torch._C._functorch.TransformType):
assert k not in self.functorch_table
self.functorch_table[k] = fn
return fn
assert isinstance(k, torch._C.DispatchKey)
assert (
k != torch._C.DispatchKey.Python
), "Please register a mode for the torch._C.DispatchKey.Python key instead."
if k in self.py_kernels:
raise RuntimeError(
f"Trying to override a python impl for {k} on operator {self.name()}"
)
self.py_kernels[k] = fn
self._dispatch_cache.clear()
return fn
return inner
def name(self):
raise NotImplementedError()
is_included_in_alias = torch._C._dispatch_is_included_in_alias
DispatchKey = torch._C.DispatchKey
# Equivalent to computeDispatchTableEntryWithDebug
def resolve_key(op: OperatorBase, k: DispatchKey): # type: ignore[valid-type]
# 1. (Direct) operator registration
if op.has_kernel_for_dispatch_key(k):
return k
# 2.1 Use CompositeExplicitAutogradNonFunctional kernel if available
cand = DispatchKey.CompositeExplicitAutogradNonFunctional
if (
k == DispatchKey.Undefined or is_included_in_alias(k, cand)
) and op.has_kernel_for_dispatch_key(cand):
return cand
# 2.2 Use CompositeExplicitAutograd kernel if available
cand = DispatchKey.CompositeExplicitAutograd
if (
k == DispatchKey.Undefined or is_included_in_alias(k, cand)
) and op.has_kernel_for_dispatch_key(cand):
return cand
has_backend_kernel = op.has_kernel_for_any_dispatch_key(
torch._C._dispatch_get_backend_keyset_from_autograd(k)
) or op.has_kernel_for_dispatch_key(DispatchKey.CompositeExplicitAutograd)
# 2.3. Use CompositeImplicitAutograd kernel if available
cand = DispatchKey.CompositeImplicitAutogradNestedTensor
if (
(k != DispatchKey.Undefined and is_included_in_alias(k, cand))
and op.has_kernel_for_dispatch_key(cand)
and not has_backend_kernel
):
return cand
cand = DispatchKey.CompositeImplicitAutograd
if (
k == DispatchKey.Undefined or is_included_in_alias(k, cand)
) and op.has_kernel_for_dispatch_key(cand):
if k == DispatchKey.AutogradOther and op.has_kernel_for_any_dispatch_key(
torch._C._dispatch_autogradother_backends
):
raise RuntimeError("ambiguous autogradother kernel")
elif not has_backend_kernel:
return cand
# 2.4. For autograd backend keys, use kernel from DispatchKey::Autograd if available
cand = DispatchKey.Autograd
if is_included_in_alias(k, cand) and op.has_kernel_for_dispatch_key(cand):
return cand
# 2.5 Use kernel from DispatchKey::FuncTorchBatchedDecomposition if available
cand = DispatchKey.FuncTorchBatchedDecomposition
if is_included_in_alias(k, cand) and op.has_kernel_for_dispatch_key(cand):
return cand
# Backend fallback
if torch._C._dispatch_has_backend_fallback(k):
# The dispatch key itself will implicitly route to backend fallback.
# This is probably not great for the pure Python implementation.
return k
raise NotImplementedError(f"could not find kernel for {op} at dispatch key {k}")
pyop_namespace = {}
class HigherOrderOperator(OperatorBase):
def __init__(self, name):
super().__init__()
self._name = name
# Make _OPNamespace not scream, this whole name based association needs a good hard look
self.__name__ = name
pyop_namespace[name] = self
self.non_fallthrough_keys = torch._C._dispatch_keyset_full()
def fallthrough(self, dispatch_key):
self.non_fallthrough_keys = self.non_fallthrough_keys.remove(dispatch_key)
def dispatch(self, dispatch_key, *args, **kwargs):
from torch.utils._python_dispatch import _get_current_dispatch_mode
if dispatch_key in self._dispatch_cache:
kernel = self._dispatch_cache[dispatch_key]
assert not isinstance(kernel, torch._C.DispatchKey)
return kernel(*args, **kwargs)
if dispatch_key == torch._C.DispatchKey.FuncTorchDynamicLayerFrontMode:
return dispatch_functorch(self, args, kwargs)
if dispatch_key == torch._C.DispatchKey.Python:
# TODO(voz): We should walk all the nodes here / turn it into a list, topmode is ok for now.
curr_mode = _get_current_dispatch_mode()
assert (
curr_mode is not None
), "Illegal invocation of dispatch on torch._C.DispatchKey.Python without a mode."
assert (
type(curr_mode) in self.python_key_mode_table
), f"Current active mode {curr_mode} not registered"
# TODO(voz): The idea behind this is that we do not yet support dispatch by key + mode, only key.
return self.python_key_mode_table[type(curr_mode)](*args, **kwargs)
final_key = resolve_key(self, dispatch_key)
# This can current fail due to backend fallbacks. You just have to
# register them by hand for HigherOrderOperator.
assert final_key in self.py_kernels, f"{dispatch_key} -> {final_key}"
self._dispatch_cache[dispatch_key] = self.py_kernels[final_key]
kernel = self.py_kernels[final_key]
# It's illegal to register DispatchKey to py_kernels, since there's no
# C++ kernel to call into
assert not isinstance(kernel, torch._C.DispatchKey)
return kernel(*args, **kwargs)
def __call__(self, *args, **kwargs):
flat_args = _to_flat_tuple(args, kwargs)
if torch.overrides.has_torch_function(flat_args):
return torch.overrides.handle_torch_function(
self, flat_args, *args, **kwargs
)
dispatch_key_set = _compute_keyset(args, kwargs, self.non_fallthrough_keys)
return self.dispatch(dispatch_key_set.highestPriorityTypeId(), *args, **kwargs)
def name(self):
return self.name
def _to_flat_tuple(args, kwargs):
flat_args, _ = torch.utils._pytree.tree_flatten(args)
flat_kwargs, _ = torch.utils._pytree.tree_flatten(kwargs)
flat_all = flat_args + flat_kwargs
return flat_all
def _compute_keyset(args, kwargs, non_fallthrough_keys):
tensors = _get_tensors(args, kwargs)
return key_extractor(tensors, non_fallthrough_keys)
def _get_tensors(args, kwargs):
flat_all = _to_flat_tuple(args, kwargs)
tensor_args = [t for t in flat_all if isinstance(t, torch.Tensor)]
return tuple(tensor_args)
# Note - this should maintain identical impl to the C++ dispatcher key extraction logic
# at ATen/core/dispatch/DispatchKeyExtractor.h
def key_extractor(tensors, key_mask):
key_set = torch._C._dispatch_tls_local_include_set()
for tensor in tensors:
key_set = key_set | torch._C._dispatch_keys(tensor)
key_set = key_set - torch._C._dispatch_tls_local_exclude_set()
key_set = key_set & key_mask
return key_set
# Note [Per Dispatch Key Modes]
# In ordinary eager mode, we have a Python dispatch key that we attach
# a mode stack to.
# However - when the PyDispatcher is enabled, we extend this functionality
# such that every (functionality) dispatch key is allowed to have
# its own mode stack.
# This is controlled by passing a `torch._C.DispatchKey` into
# the mode constructor.
_mode_stack_per_key: Dict[torch._C.DispatchKey, List] = {}
# Per-dispatch-key mode variant.
# Temporarily pops the top of a given mode stack.
@contextlib.contextmanager
def temporarily_pop_mode(mode_stack):
assert len(mode_stack) > 0
top_mode = mode_stack.pop()
try:
yield top_mode
finally:
mode_stack.append(top_mode)
def mode_stack_per_key():
global _mode_stack_per_key
return _mode_stack_per_key
# Per-dispatch-key mode variant of push_mode().
def push_mode_for_key(key, mode):
assert isinstance(key, torch._C.DispatchKey)
assert isinstance(mode, torch.utils._python_dispatch.TorchDispatchMode)
if key not in mode_stack_per_key():
mode_stack_per_key()[key] = []
mode_stack_per_key()[key].append(mode)
# Per-dispatch-key mode variant of pop_mode().
def pop_mode_for_key(key):
assert isinstance(key, torch._C.DispatchKey)
assert key in mode_stack_per_key()
curr_mode_stack = mode_stack_per_key()[key]
assert len(curr_mode_stack) > 0
return curr_mode_stack.pop()
cached_ops = set()
def add_cached_op(op_overload):
global cached_ops
cached_ops.add(op_overload)
def reset_cached_ops():
global cached_ops
cached_ops.clear()
def get_cached_ops():
global cached_ops
return cached_ops
# Each OpOverload object contains pointer to a a specific operator overload, a pointer to the parent `OpOverloadPacket` object.
# You can obtain an OpOverload object through attribute query on OpOverloadPacket.
class OpOverload(OperatorBase):
def __init__(self, overloadpacket, op, op_dk, schema, tags):
super().__init__()
self._op = op
self._op_dk = op_dk
self._schema = schema
self._overloadpacket = overloadpacket
self._tags = tags
self._overloadname = (
"default" if schema.overload_name == "" else schema.overload_name
)
self._name = self._schema.name
if schema.overload_name:
self._name += "." + schema.overload_name
self.__name__ = "{}.{}".format(
self._schema.name.split("::")[1], self._overloadname
)
self.__module__ = overloadpacket.__module__
op.__module__ = overloadpacket.__module__
self.__qualname__ = self._name
self.__annotations__ = {}
# Logic replicated from aten/src/ATen/native/MathBitsFallback.h
is_write = None
for a in self._schema.arguments:
if a.alias_info is None:
continue
if is_write is None:
is_write = a.alias_info.is_write
else:
# We will conservatively call mixed mutable/non-mutable
# aliased inputs as NOT a view
is_write = a.alias_info.is_write or is_write
self.is_view = is_write is not None and not is_write
# it's a no-op since OpOverload object is immutable and must be unique for a given op overload.
def __deepcopy__(self, memo=None):
return self
def __repr__(self):
return "<OpOverload(op='{}.{}', overload='{}')>".format(
*self._schema.name.split("::"), self._overloadname
)
def __call__(self, *args, **kwargs):
return self._op(*args, **kwargs or {})
def __hash__(self):
return hash(self._op)
# `my_namespace.my_op_name.overload_name`
def __str__(self):
return "{}.{}.{}".format(*self._schema.name.split("::"), self._overloadname)
def has_kernel_for_dispatch_key(self, k):
return super().has_kernel_for_dispatch_key(
k
) or torch._C._dispatch_has_kernel_for_dispatch_key(self.name(), k)
def has_kernel_for_any_dispatch_key(self, ks):
return torch._C._dispatch_has_kernel_for_any_dispatch_key(
self.name(), ks
) or super().has_kernel_for_any_dispatch_key(ks)
@property
def namespace(self):
return self._schema.name.split("::")[0]
def decompose(self, *args, **kwargs):
dk = torch._C.DispatchKey.CompositeImplicitAutograd
if dk in self.py_kernels:
# NB: This branch is not too necessary anymore, because we can
# apply Python CompositeImplicitAutograd *before* tracing
# using Python dispatcher (also taking advantage of the autograd
# formula). But it's included for completeness
return self.py_kernels[dk](*args, **kwargs)
elif torch._C._dispatch_has_kernel_for_dispatch_key(self.name(), dk):
return self._op_dk(dk, *args, **kwargs)
else:
return NotImplemented
# Remove a dispatch key from the dispatch cache. This will force it to get
# recomputed the next time. Does nothing
# WARNING: if you register a dispatch key to py_kernels of an OpOverload,
# calling _del_dispatch on that key is NOT sufficient to apply your change,
# because a single registration may affect MULTIPLE dispatch keys (e.g.,
# registering Autograd affects AutogradCPU). del_dispatch is to be used
# only if you are specifically modifying how get_dispatch handles a
# particular input 'key'.
def _uncache_dispatch(self, key):
self._dispatch_cache.pop(key, None)
# This implements the pre-computation logic for the Python dispatcher.
def _get_dispatch(self, key):
# This is only called upon a cache miss
assert key not in self._dispatch_cache, f"{self} {key}"
if key == torch._C.DispatchKey.Python:
if not self.python_key_mode_table:
self._dispatch_cache[key] = key
add_cached_op(self)
return key
def handler(*args, **kwargs):
from torch.utils._python_dispatch import _get_current_dispatch_mode
# TODO: We also need to handle tensor subclasses here
# TODO(voz): We should walk all the nodes here / turn it into a list, topmode is ok for now.
curr_mode = type(_get_current_dispatch_mode())
assert (
curr_mode is not None
), "Illegal invocation of dispatch on torch._C.DispatchKey.Python without a mode."
if curr_mode not in self.python_key_mode_table:
# TODO: This path is slow, should generally encourage this
# case to not happen
return self._op_dk(key, *args, **kwargs)
# TODO(voz): The idea behind this is that we do not yet support dispatch by key + mode, only key.
return self.python_key_mode_table[curr_mode](*args, **kwargs)
self._dispatch_cache[key] = handler
add_cached_op(self)
return handler
cache_result = True
functionality_key = torch._C._to_functionality_key(key) # type: ignore[attr-defined]
if functionality_key in mode_stack_per_key():
curr_stack = mode_stack_per_key()[functionality_key]
# The check for Python in the exclude set is so we properly respect `with no_dispatch()`
# calls inside of a mode.
if len(
curr_stack
) > 0 and not torch._C._dispatch_tls_is_dispatch_key_excluded(
DispatchKey.Python
):
def handler(*args, **kwargs):
# This logic is meant to be a python parallel of handle_torch_function_no_python_arg_parser.
with temporarily_pop_mode(curr_stack) as curr_mode:
assert hasattr(curr_mode, "__torch_dispatch__")
overload_types = []
args_flattened, _ = torch.utils._pytree.tree_flatten(
(args, kwargs.values())
)
for a in args_flattened:
# TODO: need to double check the semantics of the "types" argument to torch_dispatch.
# It's generated in PyInterpreter.cpp, but seems to be generated in two places,
# where in one case we only include tensors with the python key, and in another
# we include **all** tensors.
if isinstance(a, torch.Tensor) and torch._C._dispatch_keys(
a
).has(torch._C.DispatchKey.Python):
overload_types.append(type(a))
# TODO: check that I got these args correct (in C++, we pass in "0000"??)
return curr_mode.__torch_dispatch__(
self, overload_types, args, kwargs
)
# Note [Not Caching Per-Dispatch-Key Mode Handlers]
# Note that we're not caching this handler. There isn't really a point, since the slow bit
# is the handler itself (in python).
# Also, not caching means that we don't have to reset the cache when any existing
# modes go out of scope (which in of itself takes time to loop through all operators).
return handler
else:
# See Note [Not Caching Per-Dispatch-Key Mode Handlers]
cache_result = False
final_key = resolve_key(self, key)
# TODO: We could potentially have lots of debugging wrappers against
# dispatch keys; design some general registration mechanism instead of
# having if statement for each of them
if key == torch._C.DispatchKey.Functionalize:
import torch._dispatch.python as pydispatch
if pydispatch.CROSSREF_FUNCTIONALIZE:
handler = pydispatch.make_crossref_functionalize(self, final_key)
if cache_result:
self._dispatch_cache[key] = handler
add_cached_op(self)
return handler
# print(self, key, final_key)
r = self.py_kernels.get(final_key, final_key)
if cache_result:
self._dispatch_cache[key] = r
add_cached_op(self)
return r
def name(self):
return self._name
@property
def overloadpacket(self):
return self._overloadpacket
@property
def op(self):
return self._op
@property
def tags(self):
return self._tags
# TODO: add more methods to expose information about input and output arguments
# OpOverloadPacket class contains pointer to a base unresolved operator that doesn't correspond to a specific operator
# You can obtain an OpOverload object through attribute query.
class OpOverloadPacket:
def __init__(self, qualified_op_name, op_name, op, overload_names):
# These attributes are accessible on the object through the properties
# defined below but are immutable
self._qualified_op_name = qualified_op_name
self.__name__ = op_name
self._op = op
self._overload_names = overload_names
self._dir = []
# it's a no-op since OpOverloadPacket object is immutable and must be unique for a given op.
def __deepcopy__(self, memo=None):
return self
def __repr__(self):
return "<OpOverloadPacket(op='{}.{}')>".format(
*self._qualified_op_name.split("::")
)
def __hash__(self):
return hash(self._op)
def __str__(self):
return "{}.{}".format(*self._qualified_op_name.split("::"))
@property
def op(self):
return self._op
def __getattr__(self, key):
# It is not a valid op_name when __file__ is passed in
if key == "__file__":
return "torch.ops"
# ensure that query for dunder attributes that does not exist on
# opoverloadpacket but instead exists on the self._op object does not unnecessarily call
# `_get_operation_overload` (which is an expensive operation).
# This is done to prevent any potential slowdown. This list can be extended
# if there exists other attributes like `__name__` that only exist on self._op and not on the
# opoverloadpacket.
# This is ok since we are guaranteed that an overload name for an aten op can't start with '__'
try:
if key.startswith("__"):
return getattr(self._op, key)
except AttributeError:
# for consistency because it seems weird to
# throw an attribute error with a message containing
# an object name different from the one the attribute
# query was performed on.
raise AttributeError(
"'{}' can't have an overload name beginning with '__' and the "
"underlying op {} has no attribute {} either.".format(
str(self), str(self._op), key
)
) from None
try:
# This is ok since we are guaranteed that an overload name for an aten op can't be 'default'
use_key = "" if key == "default" else key
# TODO: disallow access to overloads registered by JIT
op_, op_dk_, tags = torch._C._get_operation_overload(
self._qualified_op_name, use_key
)
schema = torch._C._get_schema(self._qualified_op_name, use_key)
overload = OpOverload(self, op_, op_dk_, schema, tags)
# cache the overload object
setattr(self, key, overload)
self._dir.append(key)
return overload
except RuntimeError:
raise AttributeError(
"The underlying op of '{}' has no overload name '{}'".format(
str(self), key
)
) from None
def __iter__(self):
return iter(self._dir)
def __call__(self, *args, **kwargs):
# overloading __call__ to ensure torch.ops.foo.bar()
# is still callable from JIT
# We save the function ptr as the `op` attribute on
# OpOverloadPacket to access it here.
return self._op(*args, **kwargs or {})
# TODO: use this to make a __dir__
def overloads(self):
return [n if n else "default" for n in self._overload_names]
# Resolution of torch.fn is different from torch.ops.aten.fn
# torch.fn uses the Python argparser, matches with the
# appropriate schema, and calls into the unboxed version of the method
# torch.ops.aten.fn resolution is done via the mechanism defined in JIT.
# JIT creates a stack of all the overloads and then tries to match the
# correct one at runtime and always calls into the boxed version of the method
# Autograd codegen creates VariableType, TracerType,
# inplace or view type and python bindings.
# Aten codegen generates tensor methods for the the tensor class.
# _OpNamespace is a subclass of ModuleType because the torch script
# allows attribute lookups on modules only. Since we want torch.ops.foo.bar()
# to work from script, we need to ensure ops and foo are modules
class _OpNamespace(types.ModuleType):
"""
An op namespace to dynamically bind Operators into Python.
Say a user has created a custom Operator called "my_namespace::my_op". To
call this op, the user will write torch.ops.my_namespace.my_op(...).
At startup, this operation will not yet be bound into Python. Instead, the
following sequence of magic tricks will occur:
1. `torch.ops.my_namespace` will invoke the `__getattr__` magic method
on the `torch.ops` object, which will create a new `_OpNamespace`
object called `my_namespace` and set it as an attribute on the `ops`
object.
2. `torch.ops.my_namespace.my_op` will then invoke `__getattr__` on
the `my_namespace` object, which will retrieve the operation via
`torch.get_operation`, a function bound from C++, and then in a similar
fashion bind this new object onto the `my_namespace` object.
3. `torch.ops.my_namespace.my_op(...)` then calls this new operation
and subsequent accesses will incur no further lookup (the namespace and
operation will already exist).
"""
def __init__(self, name):
super().__init__("torch.ops." + name)
self.name = name
self._dir = []
def __iter__(self):
return iter(self._dir)
def __getattr__(self, op_name):
# It is not a valid op_name when __file__ is passed in
if op_name == "__file__":
return "torch.ops"
elif op_name == "__origin__":
raise AttributeError()
# Get the op `my_namespace::my_op` if available. This will also check
# for overloads and raise an exception if there are more than one.
namespace_name = self.name
qualified_op_name = "{}::{}".format(namespace_name, op_name)
try:
op, overload_names = torch._C._jit_get_operation(qualified_op_name)
except RuntimeError as e:
# Turn this into AttributeError so getattr(obj, key, default)
# works (this is called by TorchScript with __origin__)
raise AttributeError(
f"'_OpNamespace' '{self.name}' object has no attribute '{op_name}'"
) from e
# let the script frontend know that op is identical to the builtin op
# with qualified_op_name
torch.jit._builtins._register_builtin(op, qualified_op_name)
op.__module__ = self.__module__ + "." + namespace_name
opoverloadpacket = OpOverloadPacket(
qualified_op_name, op_name, op, overload_names
)
opoverloadpacket.__module__ = self.__module__ + "." + namespace_name
# cache the opoverloadpacket to ensure that each op corresponds to
# a unique OpOverloadPacket object
setattr(self, op_name, opoverloadpacket)
self._dir.append(op_name)
return opoverloadpacket
class _PyOpNamespace(_OpNamespace):
def __init__(self):
super().__init__("torch.ops")
self.pyop_namespace = pyop_namespace
class _Ops(types.ModuleType):
__file__ = "_ops.py"
def __init__(self):
super().__init__("torch.ops")
self.loaded_libraries = set()
self.pyops = _PyOpNamespace()
self._dir = []
def __getattr__(self, name):
# Check if the name is a pyop
if name in self.pyops.pyop_namespace:
return self.pyops.pyop_namespace[name]
# Here we are creating `torch.ops.my_namespace`
namespace = _OpNamespace(name)
setattr(self, name, namespace)
self._dir.append(name)
return namespace
def __iter__(self):
return iter(self._dir)
def load_library(self, path):
"""
Loads a shared library from the given path into the current process.
The library being loaded may run global initialization code to register
custom operators with the PyTorch JIT runtime. This allows dynamically
loading custom operators. For this, you should compile your operator
and the static registration code into a shared library object, and then
call ``torch.ops.load_library('path/to/libcustom.so')`` to load the
shared object.
After the library is loaded, it is added to the
``torch.ops.loaded_libraries`` attribute, a set that may be inspected
for the paths of all libraries loaded using this function.
Args:
path (str): A path to a shared library to load.
"""
if sys.executable == "torch_deploy":
return
path = _utils_internal.resolve_library_path(path)
with dl_open_guard():
# Import the shared library into the process, thus running its
# static (global) initialization code in order to register custom
# operators with the JIT.
ctypes.CDLL(path)
self.loaded_libraries.add(path)
# The ops "namespace"
ops = _Ops()